首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2103篇
  免费   206篇
  2309篇
  2023年   14篇
  2022年   32篇
  2021年   52篇
  2020年   37篇
  2019年   33篇
  2018年   44篇
  2017年   45篇
  2016年   81篇
  2015年   112篇
  2014年   147篇
  2013年   151篇
  2012年   171篇
  2011年   162篇
  2010年   131篇
  2009年   128篇
  2008年   154篇
  2007年   128篇
  2006年   133篇
  2005年   108篇
  2004年   120篇
  2003年   97篇
  2002年   86篇
  2001年   16篇
  2000年   6篇
  1999年   11篇
  1998年   12篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   19篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1964年   1篇
  1958年   1篇
  1946年   1篇
排序方式: 共有2309条查询结果,搜索用时 10 毫秒
11.
Dominance, its genetic basis and evolution has been at the heart of one of the most intense controversies in the history of genetics. For more than eighty years the existence of dominance modifiers, genetic elements controlling dominance-recessivity interactions, has been suggested as a theoretical possibility, but the modifier elements themselves have remained elusive. A recent study of the self-incompatibility locus in flowering plants provided the first empirical evidence for such genetic elements: small non-coding RNAs that control dominance-recessivity by mediating methylation of the promoter of the recessive allele. Theory has shown that several biological situations are favorable for the evolution of dominance modifiers. We argue that the elucidation of this mechanism of dominance opens up new research avenues that could lead to uncovering dominance modifiers in other genetic systems, such as genes controlling Batesian and Müllerian mimicry or host-parasite interactions, thereby shedding light on the generality of the proposed mechanism.  相似文献   
12.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   
13.
Four tree species in the Kostelec n. ?. l. arboretum (Czech Republic) have been repeatedly damaged by Dendrocopos medius. The unique aspect of this otherwise common behavior called girdling consists in regularly visiting the same trees every spring, although there are more than 1.200 tree species within the arboretum. We monitored transpiration, leaf phenology and the chemical composition of the xylem sap of girdled and nongirdled trees. Spectral analysis revealed slightly higher amounts of sugars, especially saccharose, in Cladrastis Raf. as the most regularly girdled tree among other conditions, comparing girdled to non-girdled trees. Higher transpiration rates were not confirmed in connection with girdling—quite the opposite—Cladrastis Raf. as the most highly favored tree for girdling showed the lowest transpiration rates (in average 6 kg water per day within spring months) compared to other non-girdled trees. We presume that the birds do not choose a particular tree on the basis of any visible or chemical traits but they examine many trees within their territory. Afterwards they probably remember the position of trees whose xylem sap starts to flow early in the spring compared to other trees, as their transpiration stream is enriched with sweet organic substances that represent an advantage for the forthcoming nesting period.  相似文献   
14.
Climate change is challenging the resilience of grapevine (Vitis), one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach including the breeding of more drought-tolerant genotypes. In this study, we focused on plant hydraulics as a multi-trait system that allows the plant to maintain hydraulic integrity and gas exchange rates longer under drought. We quantified a broad range of drought-related traits within and across Vitis species, created in silico libraries of trait combinations, and then identified drought tolerant trait syndromes. By modeling the maintenance of hydraulic integrity of current cultivars and the drought tolerant trait syndromes, we identified elite ideotypes that increased the amount of time they could experience drought without leaf hydraulic failure. Generally, elites exhibited a trait syndrome with lower stomatal conductance, earlier stomatal closure, and a larger hydraulic safety margin. We demonstrated that, when compared with current cultivars, elite ideotypes have the potential to decrease the risk of hydraulic failure across wine regions under future climate scenarios. This study reveals the syndrome of traits that can be leveraged to protect grapevine from experiencing hydraulic failure under drought and increase drought tolerance.

This article quantifies the diversity of hydraulic traits across grapevine genotypes and reveals the trait combinations that can help increase grapevine drought tolerance.  相似文献   
15.
Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2)Se/HSe(-/)Se(2-)). Among the genes whose deletion caused hypersensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O(2)-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The (?)OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O(2). Finally we showed that, in vivo, toxicity strictly depended on the presence of O(2). Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O(2)-dependent radical-based mechanism.  相似文献   
16.
17.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   
18.
Heterologous expression of two fungal chitinases, Chit33 and Chit42, from Trichoderma harzianum was tested in the different compartments and on the surface of Escherichia coli cells. Our goal was to find a fast and efficient expression system for protein engineering and directed evolution studies of the two fungal enzymes. Cytoplasmic overexpression resulted in both cases in inclusion body formation, where active enzyme could be recovered after refolding. Periplasmic expression of Chit33, and especially of Chit42, proved to be better suited for mutagenesis purposes. Recombinant chitinases from the periplasmic expression system showed activity profiles similar to those of the native proteins. Both chitinases also degraded a RET (resonance energy transfer) based bifunctionalized chitinpentaose substrate in a similar manner as reported for some putative exochitinases in the glycosyl hydrolase family 18, offering a sensitive way to assay their activities. We further demonstrated that Chit42 can also be displayed on E. coli surface and the enzymatic activity can be measured directly from the whole cells using methylumbelliferyl-chitinbioside as a substrate. The periplasmic expression and the surface display of Chit42, both offer a suitable expression system for protein engineering and activity screening in a microtiter plate scale. As a first mutagenesis approach we verified the essential role of the two carboxylic acid residues E172 (putative proton donor) and D170 (putative stabilizer) in the catalytic mechanism of Chit42, and additionally the role of the carboxylic acid E145 (putative proton donor) in the catalytic mechanism of Chit33.  相似文献   
19.
The RegB endoribonuclease participates in the bacteriophage T4 life cycle by favoring early messenger RNA breakdown. RegB specifically cleaves GGAG sequences found in intergenic regions, mainly in translation initiation sites. Its activity is very low but can be enhanced up to 100-fold by the ribosomal 30 S subunit or by ribosomal protein S1. RegB has no significant sequence homology to any known protein. Here we used NMR to solve the structure of RegB and map its interactions with two RNA substrates. We also generated a collection of mutants affected in RegB function. Our results show that, despite the absence of any sequence homology, RegB has structural similarities with two Escherichia coli ribonucleases involved in mRNA inactivation on translating ribosomes: YoeB and RelE. Although these ribonucleases have different catalytic sites, we propose that RegB is a new member of the RelE/YoeB structural and functional family of ribonucleases specialized in mRNA inactivation within the ribosome.  相似文献   
20.
The effect of water on the alcoholysis of methyl propionate and n-propanol catalyzed by immobilized Candida antarctica lipase B (CALB) has been compared in a continuous solid-gas reactor and in an organic liquid medium. The enthalpic and entropic contributions of water to the Gibbs free energy of activation in the gas phase were different from the ones in the organic phase, the inverse trends being observed for the variation of both DeltaH* and DeltaS* with water activity.Different phenomena were identified for their influence on the thermodynamic parameters. When increasing a(w), the enhanced flexibility of the enzyme was predominant in the gas phase whereas substrate-solvent interactions due to an increased polarity of the solvent affected mainly the thermodynamic parameters in the organic phase. The observed variations of DeltaG* with water activity were in accordance with kinetics results previously obtained in both reaction media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号