首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2072篇
  免费   205篇
  2024年   1篇
  2023年   14篇
  2022年   31篇
  2021年   50篇
  2020年   37篇
  2019年   31篇
  2018年   44篇
  2017年   46篇
  2016年   80篇
  2015年   110篇
  2014年   147篇
  2013年   144篇
  2012年   167篇
  2011年   162篇
  2010年   129篇
  2009年   128篇
  2008年   153篇
  2007年   128篇
  2006年   133篇
  2005年   108篇
  2004年   120篇
  2003年   97篇
  2002年   85篇
  2001年   16篇
  2000年   4篇
  1999年   10篇
  1998年   12篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   6篇
  1992年   19篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有2277条查询结果,搜索用时 31 毫秒
201.
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low Pi concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity Pi transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low Pi medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both Pi transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm.  相似文献   
202.
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na+ channel β-subunit (βENaC-Tg) suggest that raised airway Na+ transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function βENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, βENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na+ transport measured in Ussing chambers (“flooded” conditions) was raised in both Liddle and βENaC-Tg mice. Because enhanced Na+ transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic “thin film” conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na+ absorption were intact in Liddle but defective in βENaC-Tg mice. We conclude that the capacity to regulate Na+ transport and ASL volume, not absolute Na+ transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.  相似文献   
203.
Salmonellosis caused by Salmonella enterica serovar Newport is a major global public health concern, particularly because S. Newport isolates that are resistant to multiple drugs (MDR), including third-generation cephalosporins (MDR-AmpC phenotype), have been commonly isolated from food animals. We analyzed 384 S. Newport isolates from various sources by a multilocus sequence typing (MLST) scheme to study the evolution and population structure of the serovar. These were compared to the population structure of S. enterica serovars Enteritidis, Kentucky, Paratyphi B, and Typhimurium. Our S. Newport collection fell into three lineages, Newport-I, Newport-II, and Newport-III, each of which contained multiple sequence types (STs). Newport-I has only a few STs, unlike Newport-II or Newport-III, and has possibly emerged recently. Newport-I is more prevalent among humans in Europe than in North America, whereas Newport-II is preferentially associated with animals. Two STs of Newport-II encompassed all MDR-AmpC isolates, suggesting recent global spread after the acquisition of the bla(CMY-2) gene. In contrast, most Newport-III isolates were from humans in North America and were pansusceptible to antibiotics. Newport was intermediate in population structure to the other serovars, which varied from a single monophyletic lineage in S. Enteritidis or S. Typhimurium to four discrete lineages within S. Paratyphi B. Both mutation and homologous recombination are responsible for diversification within each of these lineages, but the relative frequencies differed with the lineage. We conclude that serovars of S. enterica provide a variety of different population structures.  相似文献   
204.
Sylvain Glémin 《Genetics》2010,185(3):939-959
GC-biased gene conversion (gBGC) is a recombination-associated process mimicking selection in favor of G and C alleles. It is increasingly recognized as a widespread force in shaping the genomic nucleotide landscape. In recombination hotspots, gBGC can lead to bursts of fixation of GC nucleotides and to accelerated nucleotide substitution rates. It was recently shown that these episodes of strong gBGC could give spurious signatures of adaptation and/or relaxed selection. There is also evidence that gBGC could drive the fixation of deleterious amino acid mutations in some primate genes. This raises the question of the potential fitness effects of gBGC. While gBGC has been metaphorically termed the “Achilles'' heel” of our genome, we do not know whether interference between gBGC and selection merely has practical consequences for the analysis of sequence data or whether it has broader fundamental implications for individuals and populations. I developed a population genetics model to predict the consequences of gBGC on the mutation load and inbreeding depression. I also used estimates available for humans to quantitatively evaluate the fitness impact of gBGC. Surprising features emerged from this model: (i) Contrary to classical mutation load models, gBGC generates a fixation load independent of population size and could contribute to a significant part of the load; (ii) gBGC can maintain recessive deleterious mutations for a long time at intermediate frequency, in a similar way to overdominance, and these mutations generate high inbreeding depression, even if they are slightly deleterious; (iii) since mating systems affect both the selection efficacy and gBGC intensity, gBGC challenges classical predictions concerning the interaction between mating systems and deleterious mutations, and gBGC could constitute an additional cost of outcrossing; and (iv) if mutations are biased toward A and T alleles, very low gBGC levels can reduce the load. A robust prediction is that the gBGC level minimizing the load depends only on the mutational bias and population size. These surprising results suggest that gBGC may have nonnegligible fitness consequences and could play a significant role in the evolution of genetic systems. They also shed light on the evolution of gBGC itself.GC-BIASED gene conversion (gBGC) is increasingly recognized as a widespread force in shaping genome evolution. In different species, gene conversion occurring during double-strand break recombination repair is thought to be biased toward G and C alleles. In heterozygotes, GC alleles undergo a kind of molecular meiotic drive that mimics selection (reviewed in Marais 2003). This process can rapidly increase the GC content, especially around recombination hotspots (Spencer et al. 2006), and, more broadly, can affect genome-wide nucleotide landscapes (Duret and Galtier 2009a). For instance, it is thought to play a role in shaping isochore structure evolution in mammals (Galtier et al. 2001; Meunier and Duret 2004; Duret et al. 2006) and birds (Webster et al. 2006). Direct experimental evidence of gBGC mainly comes from studies in yeast (Birdsell 2002; Mancera et al. 2008; but see Marsolier-Kergoat and Yeramian 2009) and humans (Brown and Jiricny 1987). However, associations between recombination and the nucleotide landscape and frequency spectra biased toward GC alleles provide indirect evidence in very diverse organisms (
OrganismsDirect evidenceIndirect evidenceAchille''s heel evidenceReferences
YeastMeiotic segregation biasMancera et al. (2008)
Mitotic and mitotic heteromismatch correction biasCorrelation between GC and recombinationBirdsell (2002)
MammalsMitotic heteromismatch correction biasBrown and Jiricny (1987)
Correlation between GC*/GC and recombinationDuret and Arndt (2008); Meunier and Duret (2004)
Biased frequency spectrum toward GC allelesGaltier et al. (2001); Spencer et al. (2006)
GC bias associated with high dN/dS near recombination hotspotBerglund et al. (2009; Galtier et al. (2009)
BirdsCorrelation between GC and recombinationInternational Chicken Genome Sequencing Consortium (2004)
TurtlesCorrelation between GC and chromosome sizeKuraku et al. (2006)
DrosophilaCorrelation between GC and recombinationMarais et al. (2003)
Biased frequency spectrum toward GC allelesGaltier et al. (2006)
NematodesCorrelation between GC and recombinationMarais et al. (2001)
GrassesCorrelation between GC and outcrossing/selfingGlémin et al. (2006)
Correlation between GC* and recombination and outcrossing/selfingOutcrossing increases dN/dS for genes with high GC*Haudry et al. (2008)
Green algaeCorrelation between GC and recombinationJancek et al. (2008)
ParameciumCorrelation between GC and chromosome sizeDuret et al. (2008)
Open in a separate windowThe impact of gBGC on noncoding sequences and synonymous sites has been studied in depth, especially because of confounding effects with selection on codon usage (Marais et al. 2001). More recently, Galtier and Duret (2007) pointed out that gBGC may also interfere with selection when affecting functional sequences. They argued that gBGC could leave spurious signatures of adaptive selection and proposed to extend the null hypothesis of molecular evolution. Indeed, gBGC can lead to a ratio of nonsynonymous (dN) over synonymous (dS) substitutions above one (Berglund et al. 2009; Galtier et al. 2009), i.e., a typical signature of positive selection (Nielsen 2005). This hypothesis has been widely debated for human-accelerated regions (HARs). These regions are extremely conserved across mammals but show evidence of accelerated evolution along the human lineage, which has been interpreted as evidence of positive selection (Pollard et al. 2006a,b; Prabhakar et al. 2006, 2008). On the contrary, other authors argued that patterns observed in HARs, such as the AT → GC substitution bias, the absence of a selective sweep signature, or the propensity to occur within or close to recombination hotspots, are more likely explained by gBGC rather than positive selection (Galtier and Duret 2007; Berglund et al. 2009; Duret and Galtier 2009b; but see also Pollard et al. 2006a who also suggested that gBGC might play a role in HARs evolution). It is thus crucial to take gBGC into account when interpreting genomic data.Moreover, Galtier and Duret (2007) initially suggested that gBGC hotspots could contribute to the fixation of slightly deleterious AT → GC mutations and could represent the Achilles'' heel of our genome. This hypothesis was reinforced later in primates, with evidence of gBGC-driven fixation of deleterious mutations in proteins (Galtier et al. 2009). A similar result was also found in some grass species, whose genomes are also supposed to be affected by gBGC (Glémin et al. 2006). Haudry et al. (2008) compared two outcrossing and two selfing grass species and showed that GC-biased genes exhibit higher dN/dS ratio in outcrossing than in selfing lineages. The reverse pattern would be expected under pure selective models because of the reduced selection efficacy in selfers (Charlesworth 1992; Glémin 2007). This pattern is in agreement with a genomic Achilles'' heel associated with outcrossing, while gBGC is inefficient in selfing species because they are mainly homozygous.Twenty years ago, Bengtsson (1990) already pointed out that biased conversion can generally affect the mutation load. The mutation load is the reduction in the mean fitness of a population due to mutation accumulation, which could lead to population extinction if it is too high (Lynch et al. 1995). At this time, Bengtsson concluded that “it is impossible to know if biased conversion plays a major role in determining the magnitude of the mutation load in organisms such as ourselves, but the possibility must be considered and further investigated (Bengtsson 1990, p. 186).” Now, one can propose gBGC could be such a widespread biased conversion process. It thus appears timely to thoroughly investigate the fitness consequences of gBGC through its potential effects on the dynamics of deleterious mutations. The fitness consequences of gBGC were also pointed out as a major future issue to be addressed by Duret and Galtier (2009a). In addition to the load, deleterious mutations have many other evolutionary consequences (for review see Charlesworth and Charlesworth 1998). They are thought to be the main determinant of inbreeding depression, i.e., the reduction in fitness of inbred individuals compared to outbred ones. They also play a key role in the evolution of genetic systems (sexual reproduction and recombination, inbreeding avoidance mechanisms, ploidy cycles), of senescence, or in the degeneration of nonrecombining regions, such as Y chromosomes. So far, we know little, if anything, about how gBGC might affect these processes.In his seminal work, Bengtsson (1990) did not address several important points. First, he did not include genetic drift in his model. Nearly neutral mutations, for which drift and selection are of similar intensities, are the most damaging ones because they can drift to fixation, unlike strongly deleterious mutations that are maintained at low frequency (Crow 1993; Lande 1994, 1998). While gBGC intensities are rather weak (Birdsell 2002; Spencer et al. 2006), they could markedly affect the fate of nearly neutral mutations (see also Galtier et al. 2009). Second, Bengtsson did not study the effect of gene conversion on inbreeding depression, while he showed that recessive mutations, mostly involved in inbreeding depression, are the most affected by gene conversion. Third, he did not envisage systematic GC bias with its opposite effects on A/T and G/C deleterious alleles. Fourth, while he noted that selfing affects both the efficacy of selection and that of conversion, he did not fully investigate the effect of mating systems. On one hand, selfing is efficient in purging strongly deleterious mutations causing inbreeding depression. However, since selfing is expected to increase drift, weakly deleterious mutations can fix in selfing species, contributing to the so-called “drift load” (Charlesworth 1992; Glémin 2007). Self-fertilizing populations are thus expected to exhibit low inbreeding depression and high drift load. On the other hand, gBGC, and thus its cost, vanishes as the selfing rate and homozygosity increase (Marais et al. 2004). gBGC could thus challenge classical views on mating systems and it was even speculated that gBGC could affect their evolution (Haudry et al. 2008).Here I present a population genetics model that includes mutation, selection, drift, and gBGC, which extends previous studies (Gutz and Leslie 1976; Lamb and Helmi 1982; Nagylaki 1983a,b; Bengtsson 1990). I specifically examine how gBGC can affect inbreeding depression and the mutation load. I also focus on the effect of mating system, which is especially interesting with regard to the interaction between biased conversion and selection. Finally, I discuss how these results could give insight into how gBGC evolved.

Impacts of gBGC on inbreeding depression:

Inbreeding depression is defined as the reduction in fitness of selfed (and more generally inbred) individuals compared to outcrossed individuals,(15)where and are the mean fitness of outcrosses and selfcrosses, respectively (Charlesworth and Charlesworth 1987; Charlesworth and Willis 2009). The approximation is very good in most conditions, because under weak (s ≪ 1) and strong selection (x ≪ 1) (see Glémin et al. 2003). Similar to the load, considering both sites for which either S or W alleles are deleterious, in proportion q and 1 – q, respectively, we get(16)
gBGC and the genetic basis of inbreeding depression in panmictic populations:
In infinite panmictic populations without gBGC, inbreeding depression depends only on mutation rates and dominance levels. Partially recessive mutations () contribute only to inbreeding depression, and the more recessive they are, the higher the inbreeding depression (Charlesworth and Charlesworth 1987). In finite populations, deterministic results hold for strongly deleterious mutations (s ≫ 1/Ne), which contribute mostly to inbreeding depression. Contrary to the load, weakly deleterious mutations (∼s ≤ 1/Ne) contribute little to inbreeding depression (Figure 4, a and c, and see Bataillon and Kirkpatrick 2000).Open in a separate windowFigure 4.—Inbreeding depression (×106) as a function of s without (a and c) or with (b and d) gBGC (b = 0.0002). (a and b) h = 0.2: thick lines, N = 5000; thin lines, N = 10,000; dashed lines, N = 50,000; dotted lines, N = 100,000. (c and d) N = 10,000: thick lines, h = 0.4; thin lines, h = 0.2; dashed lines, h = 0.1; dotted lines, h = 0.05. u = 10−6, λ = 2.Like the load, gBGC affects both the magnitude and the structure of inbreeding depression. In infinite populations, and more generally for strongly deleterious alleles (Nes ≫ 1), replacing x by xeq given by Equations 4 in Equations 15 and 16 leads to(17a)(17b)(17c)The effect of gBGC on inbreeding depression is not monotonic. Like the load, gBGC increases inbreeding depression if b > hs(1 − 2q/(q + λ − qλ)). However, contrary to the load, a strong gBGC decreases inbreeding depression, which tends to 0 as b increases, while the load tends to qs (Equation 10c). An analysis of Equation 17b shows that mutations that maximize inbreeding depression are those that also maximize the load, i.e., S deleterious mutations with s ≈ 2b.In finite populations, inbreeding depression must be integrated over the Φ distribution, which leads to(18)(see also Glémin et al. 2003). While it is not possible to get an analytical expression of (18), numerical computations (see appendix b) show that S deleterious mutations with s ≈ 2b also maximize inbreeding depression in finite populations (Figure 4). More broadly, inbreeding depression is maximal under the overdominant-like selection regime (gray area in Figure 2). Once again, even low to moderate gBGC markedly affects the genetic structure of inbreeding depression. First, mutations of intermediate effects contribute the most to inbreeding depression, i.e., up to one order of magnitude higher than strongly deleterious mutations (compare Figure 4a with 4b). Second, even nearly additive mutations can have a substantial effect (compare Figure 4c with 4d).Since little is known about the distribution of dominance coefficients, especially the dominance of mildly deleterious mutations (of the order of b), it is difficult to quantitatively predict the full impact of gBGC on inbreeding depression. We can conclude that, on average, gBGC should increase inbreeding depression. However, further insight into mutational parameters is crucial to assess the quantitative impact of gBGC.

Joint effect of gBGC and mating system on the load and inbreeding depression:

Selfing, or more generally inbreeding, slightly reduces the segregating load through the purging of recessive mutations (Ohta and Cockerham 1974), but can substantially increase the fixation load because of the effective population size reduction under inbreeding: (see above and Pollak 1987; Nordborg 1997; Glémin 2007). In numerical examples, I assumed that α decreases with F according to the background selection model (Charlesworth et al. 1993; Nordborg et al. 1996), as in Glémin (2007). With gBGC, selfing thus has two opposite effects on the fixation load. Selfing increases the drift load sensu stricto but decreases the fixation load due to gBGC. A surprising consequence is that the load can be higher in outcrossing than in selfing populations (Figure 5). Quantitatively this is also expected, even with a gBGC hotspot affecting just 3% of the genome (Figure 5 and Open in a separate windowFigure 5.—Effective population size (a and b) and the load (×106) (c–f) as a function of F for different gBGC intensities (thick lines, b = 0; thin lines, b = 0.0001; dashed lines, b = 0.0002; dotted lines, b = 0.0005). The effective population size depends on F under the background selection (BS) model (Charlesworth et al. 1993), using Equations 16 and 17 in Glémin (2007): , where U is the genomic deleterious mutation rate, R is the genomic recombination rate, sd is the mean selection coefficient against strongly deleterious mutations, and hd is their dominance coefficient. N = 10,000, U = 0.2, hd = 0.1, and sd = 0.05. (a, c, and e) R = 5, “weak” BS; (b, d, and f) R = 0.5, “strong” BS. (c and d) Load averaged over half GC and half AT deleterious alleles, with a bias in favor of AT alleles. (e and f) Load averaged over 10% of GC deleterious alleles and 90% of AT deleterious alleles with a bias in favor of AT alleles; see Figure 3. h = 0.5, u = 10−6, and λ = 2.Generally, the effect of selfing is simpler for inbreeding depression. Purging, Ne reduction, and suppression of gBGC contribute to decreasing inbreeding depression in selfing populations (Figure 6a). However, there are special cases in which maximum inbreeding depression is reached for intermediate selfing rates (Figure 6b). In such cases, in outcrossing populations, gBGC is strong enough to sweep polymorphism out and reduce inbreeding depression (b > s, regime 1 in Figure 2). As the selfing rate increases, gBGC declines, and the selection dynamics become overdominant-like (regime 2, Figure 2), thus maximizing inbreeding depression. For high selfing rates, gBGC vanishes (regime 3 in Figure 2) and deleterious alleles are either purged or fixed if there is substantial drift. This is similar to the effect of selfing on inbreeding depression caused by asymmetrical overdominance, where inbreeding depression also peaks for intermediate selfing rates (Ziehe and Roberds 1989; Charlesworth and Charlesworth 1990). In the present case, the range of parameters leading to this peculiar behavior is narrow because the overdominant-like region depends on the selfing rates and can vanish either for low or for high selfing rates (Figure 2).Open in a separate windowFigure 6.—Inbreeding depression (×106) as a function of F for different gBGC intensities (thick lines, b = 0; thin lines, b = 0.0001; dashed lines, b = 0.0002; dotted lines, b = 0.0005). Inbreeding depression is averaged over half GC and half AT deleterious alleles. The effective population size depends on F as in Figure 5 (same parameters). (a) s = 0.002; (b) s = 0.0005; (c) s = 0.0002. h = 0.2, u = 10−6, and λ = 2.

Minimum load and the evolution of gBGC and recombination landscapes:

Although gBGC may have deleterious fitness consequences, it is surprising that it evolved in many taxa (Duret and Galtier 2009a). Birdsell (2002) initially suggested that gBGC may have evolved as a response to mutational bias toward AT (λ > 1, here). Indeed, I show that a minimum load is reached for weak gBGC (b ≈ ln(λ)/4N, Equation 14). This result is very general whatever the distribution of fitness effects of mutations (appendix d). However, the range of optimal gBGC is narrow, and gBGC increases the load as far as b > ln(λ)/2N (appendix c). In humans, using N = 10,000 and λ = 2, gBGC levels that minimize the load are ∼1.17 × 10−5, i.e., one order of magnitude lower than the average bias observed in recombination hotspots (Myers et al. 2005). However, selection on conversion modifiers will not necessarily minimize the load because of gametic disequilibrium generated between modifiers and fitness loci (Bengtsson and Uyenoyama 1990). Selection for limitation of somatic AT-biased mutations could also have selected for GC-biased mismatch repair machinery (Brown and Jiricny 1987). If the bias level that would be selected for somatic reasons is >ln(λ)/2N, a side effect would be the generation of a substantial load at the population level. Finally, it is interesting to note that when synonymous codon positions are under selection for translation accuracy, optimal gBGC levels can be higher than gBGC levels that minimize the protein load, especially when most optimal codons end in G or C ().Conversely, gBGC could also affect the evolution of recombination landscapes, which could evolve to reduce the gBGC load. Surprisingly, for a given recombination/conversion level, the hotspot distribution does not appear to be optimal (Nishant and Rao 2005), one can speculate that the hotspot localization outside genes could be a response to avoid the deleterious effects of gBGC.Up to now, these verbal arguments have not been assessed theoretically (but see Bengtsson and Uyenoyama 1990 for a different kind of conversion bias). Population genetics models are necessary to test these hypotheses concerning the evolution of gBGC and recombination landscapes and to pinpoint the key parameters that might govern their evolution.

gBGC and the evolution of mating systems:

Deleterious mutations also play a crucial role in the evolution of mating systems. They are the main source of inbreeding depression, which balances the automatic advantage of selfing. The drift load is also thought to contribute to the extinction of selfing species. Since they are mainly homozygous, selfing species are mostly free from gBGC and its deleterious impacts. I discuss below how this might affect the evolution of mating systems.
Inbreeding depression and the shift in mating systems:
Inbreeding depression plays a key role in the evolution of mating systems (Charlesworth and Charlesworth 1987; Charlesworth 2006b). Since it balances the automatic advantage of selfing, high inbreeding depression favors outcrossing, while selfing can evolve when it is low. Moreover, selfing helps to purge strongly deleterious mutations, thus decreasing inbreeding depression. This positive feedback reinforces the disruptive selection on the selfing rate and prevents the transition from selfing to outcrossing (Lande and Schemske 1985).Theoretical results suggest that, in most conditions, gBGC would reinforce inbreeding depression in outcrossing populations (Figure 6), which would prevent the evolution of selfing. In reverse, if selfing is initially selected for, recurrent selfing would reduce the load through both purging and avoidance of gBGC. Under this scenario, gBGC would reinforce disruptive selection on mating systems. However, under some conditions (see Figure 6), inbreeding depression peaks at intermediate selfing rates, as observed for asymmetrical overdominance (Ziehe and Roberds 1989; Charlesworth and Charlesworth 1990). In theory, this could prevent the shift toward complete selfing and maintain stable mixed mating systems (Charlesworth and Charlesworth 1990; Uyenoyama and Waller 1991). However, this pattern is observed under restrictive conditions and it is very unlikely on the whole-genome scale. Dominance patterns are crucial for predicting inbreeding depression, especially with gBGC. Contrary to the load, it is thus difficult to evaluate the quantitative impact of gBGC on inbreeding depression. However, increased inbreeding depression in outcrossing species subject to gBGC seems to be the most likely scenario.
gBGC and the long-term evolution of mating systems:
In the long term, the gBGC-induced load also challenges the “dead-end hypothesis,” which posits that, because of the reduction of selection efficacy, self-fertilizing species would accumulate weakly deleterious mutations in the long term, eventually leading to extinction (Takebayashi and Morrell 2001). Because of gBGC, not drift, outcrossing species could also accumulate a load of weakly deleterious mutations (Figure 7), and they could suffer from a higher load than highly self-fertilizing species (Haudry et al. (2008) found that in two outcrossing grass species, but not in two self-fertilizing ones, the dN/dS ratio is significantly higher for genes exhibiting GC enrichment. They speculated that substitutions in these genes might contribute to increasing the load in these two outcrossing grass species. Such results are still very sparse. In plants, evidence of strong gBGC is mainly restricted to grasses (but see Wright et al. 2007). It will be necessary to conduct more in-depth studies to assess the phylogenetic distribution of gBGC in plants and other hermaphrodite organisms and to further test the genomic Achilles'' heel hypothesis in relation to mating systems. While theoretically possible, the quantitative effect of gBGC on the evolution of mating systems remains a new, open, and challenging question.

Conclusion:

I showed that the interaction between gBGC and selection might have surprising qualitative consequences on load and inbreeding depression patterns. Given the few quantitative data available on gBGC levels and selection intensities (mainly in humans), it turns out that even weak genome-wide gBGC can have significant fitness impacts. gBGC should be taken into account not only for sequence analyses (Berglund et al. 2009; Galtier et al. 2009), but also for its potential fitness consequences, for instance concerning genetic diseases. Interferences between gBGC and selection also give rise to new questions on the evolution of mating systems. However, most of the challenging conclusions given here have yet to be quantitatively evaluated. Quantification of gBGC and its interaction with selection in various organisms will be crucial in the future.  相似文献   
205.
Occurrence of molecular abnormalities of cell cycle in L132 cells after in vitro short-term exposure to air pollution PM2.5     
Imane Abbas  Guillaume Garçon  Françoise Saint-Georges  Sylvain Billet  Anthony Verdin  Pierre Gosset  Philippe Mulliez  Pirouz Shirali 《Chemico-biological interactions》2010,188(3):558-565
To improve the knowledge of the underlying mechanisms implying in air pollution Particulate Matter (PM)-induced lung toxicity in humans, we were interested in the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation in the L132 target human lung epithelial cell model. The most toxicologically relevant physical and chemical characteristics of air pollution PM2.5 collected in Dunkerque, a French highly-industrialized sea-side city, were determined. L132 cells were exposed during 24, 48 and 72 h to Dunkerque City's PM2.5 (i.e. Lethal Concentration (LC)10 = 18.84 μg PM/mL or 5.02 μg PM/cm2; LC50 = 75.36 μg PM/mL or 20.10 μg PM/cm2), TiO2 and desorbed PM (i.e. dPM; EqLC10 = 15.42 μg/mL or 4.11 μg PM/cm2; EqLC50 = 61.71 μg/mL or 16.46 μg PM/cm2), benzene (7 μM) or Benzo[a]Pyrene (B[a]P; 1 μM). Dunkerque City's PM2.5 altered the gene expression and/or the protein concentration of several key cell cycle controllers from TP53-RB gene signaling pathway (i.e. P53; BCL2; P21; cyclin D1, cyclin-dependent kinase 1; retinoblastoma protein) in L132 cells, thereby leading to the occurrence of cell proliferation and apoptosis together. The activation of the critical cell cycle controllers under study might be related to PM-induced oxidative stress, through the possible involvement of covalent metals in redox systems, the metabolic activation of organic chemicals by enzyme-catalyzed reactions, and phagocytosis. Taken together, these results might ask the critical question whether there is a balance or, in contrast, rather an imbalance between the cell proliferation and the apoptosis occurring in PM-exposed L132 cells, with possible consequences in term of PM-induced lung tumorgenesis.  相似文献   
206.
Dependence of acetylcholine and ADP dilation of pial arterioles on heme oxygenase after transfusion of cell-free polymeric hemoglobin     
Rebel A  Cao S  Kwansa H  Doré S  Bucci E  Koehler RC 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H1027-H1037
Polymers of cell-free hemoglobin have been designed for clinical use as oxygen carriers, but limited information is available regarding their effects on vascular regulation. We tested the hypothesis that the contribution of heme oxygenase (HO) to acetylcholine-evoked dilation of pial arterioles is upregulated 2 days after polymeric hemoglobin transfusion. Dilator responses to acetylcholine measured by intravital microscopy in anesthetized cats were blocked by superfusion of the HO inhibitor tin protoporphyrin-IX (SnPPIX) in a group that had undergone exchange transfusion with hemoglobin 2 days earlier but not in surgical sham and albumin-transfused groups. However, immunoblots from cortical brain homogenates did not reveal changes in expression of the inducible isoform HO1 or the constitutive isoform HO2 in the hemoglobin-transfused group. To test whether the inhibitory effect of SnPPIX was present acutely after hemoglobin transfusion, responses were measured within an hour of completion of the exchange transfusion. In control and albumin-transfused groups, acetylcholine responses were unaffected by SnPPIX but were blocked by addition of the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine (l-NNA) to the superfusate. In hemoglobin-transfused groups, the acetylcholine response was blocked by either SnPPIX or l-NNA alone. The effect of another HO inhibitor, chromium mesoporphyrin (CrMP), was tested on ADP, another endothelial-dependent dilator, in anesthetized rats. Pial arteriolar dilation to ADP was unaffected by CrMP in controls but was attenuated 62% by CrMP in rats transfused with hemoglobin. It is concluded that 1) polymeric hemoglobin transfusion acutely upregulates the contribution of HO to acetylcholine-induced dilation of pial arterioles in cats, 2) this upregulation persists 2 days after transfusion when 95% of the hemoglobin is cleared from the circulation, and 3) this acute upregulation of HO signaling is ubiquitous in that similar effects were observed with a different endothelial-dependent agonist (i.e., ADP) in a another species (rat).  相似文献   
207.
PFPI-like genes are expressed in Leishmania major but are pseudogenes in other Leishmania species     
Eschenlauer SC  Coombs GH  Mottram JC 《FEMS microbiology letters》2006,260(1):47-54
Pyrococcus furiosus protease I (PFPI) is a multimeric cysteine peptidase from P. furiosus. Genome analyses indicate that orthologues are present in rather few other organisms, including Dictyostelium discoideum and several bacteria, Archaea and plants. An open reading frame (ORF) coding for a PFPI-like protein (PFP1) was identified in Leishmania major and Leishmania mexicana and full-length spliced and polyadenylated PFP1 mRNA detected for both species. Vestiges of a PFPI-like gene could also be identified in Leishmania braziliensis and Leishmania infantum, but no ORF remains owing to the presence of frame-shifts and stop codons. No evidence for a PFPI-like gene could be found in the syntenic region of Trypanosoma brucei or Trypanosoma cruzi, raising the possibility that the PFPI-like genes were acquired by a lateral gene transfer event after the divergence of trypanosomes and Leishmania. The gene may have subsequently degenerated into a pseudogene in some Leishmania species, owing to the loss of relevant biological function. However, antibodies raised against L. mexicana recombinant protein detected PFP1 in promastigote extracts of L. major, but not in L. mexicana promastigote or amastigote extracts. The expression of PFP1 in L. major suggests that PFP1 might contribute to the disease tropism that distinguishes this Leishmania species from others.  相似文献   
208.
The feeder layer-mediated extended lifetime of cultured human skin keratinocytes is associated with altered levels of the transcription factors Sp1 and Sp3     
Masson-Gadais B  Fugère C  Paquet C  Leclerc S  Lefort NR  Germain L  Guérin SL 《Journal of cellular physiology》2006,206(3):831-842
  相似文献   
209.
Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1     
Gobeil F  Zhu T  Brault S  Geha A  Vazquez-Tello A  Fortier A  Barbaz D  Checchin D  Hou X  Nader M  Bkaily G  Gratton JP  Heveker N  Ribeiro-da-Silva A  Peri K  Bard H  Chorvatova A  D'Orléans-Juste P  Goetzl EJ  Chemtob S 《The Journal of biological chemistry》2006,281(23):16058-16067
  相似文献   
210.
Role of interferons in the control of Lassa virus replication in human dendritic cells and macrophages     
Baize S  Pannetier D  Faure C  Marianneau P  Marendat I  Georges-Courbot MC  Deubel V 《Microbes and infection / Institut Pasteur》2006,8(5):1194-1202
Lassa fever is a hemorrhagic fever caused by Lassa virus (LV), which primarily targets human dendritic cells (DC) and macrophages (MP). Massive numbers of viral particles are released with no effect on the viability, activation or maturation of these cells. LV does not inhibit the activation of cells induced by sCD40L or LPS. We report here the consequences of exogenous activation of LV-infected human DC and MP for viral replication. The activation of cells with lipopolysaccharide or exogenous poly(I-C) and the transfection of cells with poly(I-C) strongly inhibited LV replication, at least partly by inducing type I interferon (IFN) synthesis. In contrast, cell stimulation with sCD40L did not induce type I IFN responses or inhibit LV release. Recombinant type I IFNs strongly inhibited LV replication in both cell types, whereas IFNgamma and IFNlambda did not. The modest type I IFN production observed in LV-infected MP, but not in DC, was involved in controlling LV replication in MP. These results provide an explanation for the slower replication of LV in MP than in DC, and suggest that type I IFNs are crucial in the control of LV.  相似文献   
[首页] « 上一页 [16] [17] [18] [19] [20] 21 [22] [23] [24] [25] [26] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号