首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4634篇
  免费   369篇
  2024年   5篇
  2023年   30篇
  2022年   37篇
  2021年   93篇
  2020年   73篇
  2019年   74篇
  2018年   133篇
  2017年   110篇
  2016年   195篇
  2015年   272篇
  2014年   314篇
  2013年   358篇
  2012年   427篇
  2011年   366篇
  2010年   254篇
  2009年   227篇
  2008年   312篇
  2007年   273篇
  2006年   281篇
  2005年   224篇
  2004年   215篇
  2003年   166篇
  2002年   167篇
  2001年   47篇
  2000年   30篇
  1999年   28篇
  1998年   20篇
  1997年   14篇
  1996年   16篇
  1995年   11篇
  1994年   16篇
  1993年   11篇
  1992年   23篇
  1991年   13篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1986年   7篇
  1984年   10篇
  1983年   15篇
  1982年   6篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1977年   5篇
  1975年   10篇
  1974年   11篇
  1973年   7篇
  1971年   6篇
  1969年   5篇
排序方式: 共有5003条查询结果,搜索用时 187 毫秒
21.
It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions.Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.Abbreviations VNA Viable non-apoptotic cells - VA Viable apoptotic cells - NVNA Nonviable non-apoptotic or necrotic cells - NVA Nonviable apoptotic cells - CF Chromatin-free cells (late nonviable apoptotic cells) - AO Acridine orange - EB Ethidium Bromide - MAb Monoclocnal antibody - D.O. Dissolved oxygen - qMAb Specific MAb production rate (mg. (109 cells)–1.day–1) - Specific growth rate (h–1) - Xv Viable cell number (105 cells.mL–1) - Xt Total cell number (105 cells.mL–1) - Ylac/glc Yield coefficient of lactate on glucose (mM lactate produced/mM glucose consumed)  相似文献   
22.
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle.  相似文献   
23.
Using strains with or without the PhoE porin or different components of the phosphate regulon, we determined that maintenance of the culturability of Escherichia coli in seawater depended significantly on the presence of structures allowing access of phosphate ions to the periplasm, then to the cytoplasm of cells. Cells totally deprived of the two main phosphate transport systems (Pit, Pst) exhibited the highest loss of culturability. Most of this effect resulted from the loss of the high-affinity Pst system, and more specifically that of the periplasmic phosphate-binding protein PhoS. Survival was enhanced in seawater supplemented with phosphate (0.5 mm), whether or not these structures were present. From an ecological point of view, it is assumed that the presence of phosphate ions, even at low concentrations, can influence the behavior of E. coli cells in seawater. Offprint requests to: M.J. Gauthier  相似文献   
24.
25.
Sexual selection is considered one of the key processes that contribute to the emergence of new species. While the connection between sexual selection and speciation has been supported by comparative studies, the mechanisms that mediate this connection remain unresolved, especially in plants. Similarly, it is not clear how speciation processes within plant populations translate into large-scale speciation dynamics. Here, we review the mechanisms through which sexual selection, pollination, and mate choice unfold and interact, and how they may ultimately produce reproductive isolation in plants. We also overview reproductive strategies that might influence sexual selection in plants and illustrate how functional traits might connect speciation at the population level (population differentiation, evolution of reproductive barriers; i.e. microevolution) with evolution above the species level (macroevolution). We also identify outstanding questions in the field, and suitable data and tools for their resolution. Altogether, this effort motivates further research focused on plants, which might potentially broaden our general understanding of speciation by sexual selection, a major concept in evolutionary biology.  相似文献   
26.
Probiotics and Antimicrobial Proteins - Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent,...  相似文献   
27.
28.
29.
Mitogen-activated protein (MAP) kinases are serine/threonine kinases that are rapidly activated in response to mitogenic stimuli. Here we examined the enzymatic activity and phosphorylation state of the individual p44mapk and p42mapk isoforms during early G1 and late G1 phase of the mammalian cell cycle. Release of fibroblast cells from early G1 block was accompanied by a rapid rise in the myelin basic protein (MBP) kinase activity of p44mapk and p42mapk, which declined slowly over several hours to reach negligible values as cells enter S phase. When cells were released from late G1 block, the activity of p44mapk and p42mapk increased transiently, and then rapidly declined to baseline values during G1 to S phase transition. Cells released at the G1/S boundary in a medium lacking growth factors entered S phase in the complete absence of MAP kinase activity. Unlike MAP kinases, the histone H1 kinase activity of p33cdk2 was elevated in late G1-arrested cells and continued to increase during S phase entry. The enzymatic activation of p44mapk and p42mapk in both early G1 and late G1 phase was accompanied by an increase in the phosphothreonine and phosphotyrosine content of the proteins. These findings suggest that the sustained activation of MAP kinases during G1 progression and their inactivation at the G1/S transition are two regulatory processes involved in the mitogenic response to growth factors. © 1995 Wiley-Liss, Inc.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号