首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4135篇
  免费   410篇
  国内免费   2篇
  2023年   28篇
  2022年   53篇
  2021年   99篇
  2020年   78篇
  2019年   65篇
  2018年   89篇
  2017年   86篇
  2016年   147篇
  2015年   239篇
  2014年   266篇
  2013年   295篇
  2012年   344篇
  2011年   328篇
  2010年   248篇
  2009年   217篇
  2008年   290篇
  2007年   275篇
  2006年   242篇
  2005年   188篇
  2004年   212篇
  2003年   177篇
  2002年   148篇
  2001年   53篇
  2000年   22篇
  1999年   25篇
  1998年   28篇
  1997年   15篇
  1996年   14篇
  1995年   14篇
  1994年   21篇
  1993年   14篇
  1992年   36篇
  1991年   16篇
  1990年   19篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   16篇
  1983年   13篇
  1982年   12篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1976年   8篇
  1975年   6篇
  1974年   9篇
  1971年   8篇
  1969年   4篇
排序方式: 共有4547条查询结果,搜索用时 15 毫秒
21.
The hypothesis that oxygen-derived free radicals play an important role in myocardial ischemic and reperfusion injury has received a lot of support. In the presence of catalytic amounts of transition metals such as iron, superoxide anions, and hydrogen peroxide can be transformed into a highly reactive hydroxyl radical °OH (Haber-Weiss reaction). In view of this, we have undertaken this study to investigate whether iron is involved in the reperfusion syndrome and therefore could aggravate free radicals injury. Coronary effluent iron concentrations and cardiac cytosolic iron levels were evaluated in rat hearts subjected to an ischemia/reperfusion sequences. In the case of total ischemia, iron concentration in coronary effluents peaked immediately in the first sample collected upon reperfusion. However, in the case of partial ischemia, iron concentration in coronary effluents peaked rather exclusively during ischemia period. Cardiac cytosolic iron level augmented significantly after 30 min of total ischemia and non significantly in the other ischemia protocols compared to perfused control hearts. It also appears that the iron released is not protein-bound, and could therefore have a marked catalytic activity. The results of the present study suggest that in the oxygen paradox, iron plays an important role in inducing alterations during reoxygenation.  相似文献   
22.
A genomic clone of the S11 allele from the self-incompatibility locus (S locus) in Solanum chacoense Bitt. has been isolated by cross-hybridization to the S. chacoense S13 allele and sequenced. The sequence of the S11 allele contains all the features expected for S genes of the Solanaceae, and S11 expression, as assessed by northern blots and RNA-PCR, was similar to that of other S. chacoense S alleles. The S11 protein sequence shares 95% identity with the phenotypically distinct S13 protein of S. chacoense and is the gametophytic S allele with the highest similarity to an existing allele so far discovered. Only 10 amino acid changes differentiate the mature proteins from these two alleles, which sets a new lower limit to the number of changes that can produce an altered S allele specificity. The amino acid substitutions are not clustered, suggesting that an accumulation of random point mutations can generate S allele diversity. The S11 intron is unusual in that it could be translated in frame with the coding sequence, thus suggesting an additional mechanism for the generation of new S alleles.  相似文献   
23.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   
24.
It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions.Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.Abbreviations VNA Viable non-apoptotic cells - VA Viable apoptotic cells - NVNA Nonviable non-apoptotic or necrotic cells - NVA Nonviable apoptotic cells - CF Chromatin-free cells (late nonviable apoptotic cells) - AO Acridine orange - EB Ethidium Bromide - MAb Monoclocnal antibody - D.O. Dissolved oxygen - qMAb Specific MAb production rate (mg. (109 cells)–1.day–1) - Specific growth rate (h–1) - Xv Viable cell number (105 cells.mL–1) - Xt Total cell number (105 cells.mL–1) - Ylac/glc Yield coefficient of lactate on glucose (mM lactate produced/mM glucose consumed)  相似文献   
25.
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle.  相似文献   
26.
In six chronic dialyzed uremic patients, an intravenous sodium selenite (Se 50 μg during 5 wk and then 100 μg) and zinc gluconate (Zn 5 mg) supplementation was performed during 20 wk at each dialysis session three times weekly. Before supplementation, plasma Se and Zn, plasma and erythrocytes (RBC) antioxidant metalloenzymes glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly decreased, whereas lipid peroxidation (as thiobarbituric acid reactants TBARs) was increased. To obtain a significative change in plasma selenium, we had to use an Se dose of 100 μg/dialysis session. Then, treatment-increased plasma Se (from 0.58 ±0.09 to 0.89±0.16 μmol/L) led to a repletion of RBC-GPX (from 29.6±6 to 43±5.8 U/g Hb) and increased plasma GPX levels (from 62±13 to 151±43 U/L). Plasma Zn and RBC-SOD did not vary significantly. The change of TBARs was not observed between wk 1 and 4. They decreased significantly between wk 4 (4.80±0.21μmol/L) and wk 20 (4.16±0.26 μmol/L). We noted a low correlation between TBARs and plasma GPX. A strong correlation was observed between Se and plasma GPX. The reversal of Se deficiencies should reduce oxidative damage observed in these patients.  相似文献   
27.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
28.
Although conformity as a major driver for human cultural evolution is a well-accepted and intensely studied phenomenon, its importance for non-human animal culture has been largely overlooked until recently. This limited for decades the possibility of studying the roots of human culture. Here, we provide a historical review of the study of conformity in both humans and non-human animals. We identify gaps in knowledge and propose an evolutionary route towards the sophisticated cultural processes that characterize humanity. A landmark in the study of conformity is Solomon Asch's famous experiment on humans in 1955. By contrast, interest in conformity among evolutionary biologists has only become salient since the turn of the new millennium. A striking result of our review is that, although studies of conformity have examined many biological contexts, only one looked at mate choice. This is surprising because mate choice is probably the only context in which conformity has self-reinforcing advantages across generations. Within a metapopulation, i.e. a group of subpopulations connected by dispersing individuals, dispersers able to conform to the local preference for a given type of mate have a strong and multigenerational fitness advantage. This is because once females within one subpopulation locally show a bias for one type of males, immigrant females who do not conform to the local trend have sons, grandsons, etc. of the non-preferred phenotype, which negatively and cumulatively affects fitness over generations in a process reminiscent of the Fisher runaway process. This led us to suggest a sex-driven origin of conformity, indicating a possible evolutionary route towards animal and human culture that is rooted in the basic, and thus ancient, social constraints acting on mating preferences within a metapopulation. In a generic model, we show that dispersal among subpopulations within a metapopulation can effectively maintain independent Fisher runaway processes within subpopulations, while favouring the evolution of social learning and conformity at the metapopulation scale; both being essential for the evolution of long-lasting local traditions. The proposed evolutionary route to social learning and conformity casts surprising light on one of the major processes that much later participated in making us human. We further highlight several research avenues to define the spectrum of conformity better, and to account for its complexity. Future studies of conformity should incorporate experimental manipulation of group majority. We also encourage the study of potential links between conformity and mate copying, animal aggregations, and collective actions. Moreover, validation of the sex-driven origin of conformity will rest on the capacity of human and evolutionary sciences to investigate jointly the origin of social learning and conformity. This constitutes a stimulating common agenda and militates for a rapprochement between these two currently largely independent research areas.  相似文献   
29.
In the framework of the European project aimed at the sequencing of the Bacillus subtilis genome the DNA region located between gerB (314°) and sacXV (333°) was assigned to the Institut Pasteur. In this paper we describe the cloning and sequencing of a segment of 97 kb of contiguous DNA. Ninety-two open reading frames were predicted to encode putative proteins among which only forty-two were found to display significant similarities to known proteins present in databanks, e.g. amino acid permeases, proteins involved in cell wall or antibiotic biosynthesis, various regulatory proteins, proteins of several dehydrogenase families and enzymes II of the phosphotransferase system involved in sugar transport. Additional experiments led to the identification of the products of new B. subtilis genes, e.g. galactokinase and an operon involved in thiamine biosynthesis.  相似文献   
30.
The root extract of Nauclea xanthoxylon (A.Chev.) Aubrév. displayed significant 50 % inhibition concentration (IC50s) of 0.57 and 1.26 μg/mL against chloroquine resistant and sensitive Plasmodium falciparum (Pf) Dd2 and 3D7 strains, respectively. Bio-guided fractionation led to an ethyl acetate fraction with IC50s of 2.68 and 1.85 μg/mL and subsequently, to the new quinovic acid saponin named xanthoxyloside ( 1 ) with IC50s of 0.33 and 1.30 μM, respectively against the tested strains. Further compounds obtained from ethyl acetate and hexane fractions were the known clethric acid ( 2 ), ursolic acid ( 3 ), quafrinoic acid ( 4 ), quinovic acid ( 5 ), quinovic acid 3-O-β-D-fucopyranoside ( 6 ), oleanolic acid ( 7 ), oleanolic acid 3-acetate ( 8 ), friedelin ( 9 ), β-sitosterol ( 10a ), stigmasterol ( 10b ) and stigmasterol 3-O-β-D-glucopyranoside ( 11 ). Their structures were characterised with the aid of comprehensive spectroscopic methods (1 and 2D NMR, Mass). Bio-assays were performed using nucleic acid gel stain (SYBR green I)-based fluorescence assay with chloroquine as reference. Extracts and compounds exhibited good selectivity indices (SIs) of >10. Significant antiplasmodial activities measured for the crude extract, the ethyl acetate fraction and xanthoxyloside ( 1 ) from that fraction can justify the use of the root of N. xanthoxylon in ethnomedicine to treat malaria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号