首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   19篇
  2023年   1篇
  2021年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   10篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   9篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1994年   1篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有133条查询结果,搜索用时 250 毫秒
41.
Hirschsprung's disease (HSCR, aganglionic megacolon) is a frequent congenital malformation regarded as a multigenic neurocristopathy. Three susceptibility genes have been recently identified in HSCR, namely the RET proto-oncogene, the endothelin B receptor (EDNRB) gene, and the endothelin 3 (EDN3) gene. RET gene mutations were found in significant proportions of familial (50%) and sporadic (15-20%) HSCR, while homozygosity for EDNRB or EDN3 mutations accounted for the rare HSCR-Waardenburg syndrome (WS) association. More recently, heterozygous EDNRB an EDN3 missense mutations have been reported in isolated HSCR patients. Some of these results were obtained after the identification of mouse genes whose natural or site-directed mutations resulted in megacolon and coat color spotting. There is also conclusive evidence for the involvement of other independent loci in HSCR. In particular, the recent identification of neurotrophic factors acting as RET ligands (GDNF and Neurturin) provide additional candidate genes for HSCR. The dissection of the genetic etiology of HSCR disease may then provide a unique opportunity to distinguish between a polygenic and a genetically heterogeneous disease, thereby helping to understand other complex disorders and congenital malformations hitherto considered as multifactorial in origin. Finally, the study of the molecular bases of HSCR is also a step towards the understanding of developmental genetics of the enteric nervous system giving support to the role of the tyrosine kinase and endothelin-signaling pathways in the development of neural crest-derived enteric neurons in human.  相似文献   
42.
Novel methods allowing to analyze the human genome make it possible to assess old questions such as the molecular basis of structural chromosome anomalies and the diathesis to aneuploidy. The architecture of the human genome as unravelled by the human genome sequencing project allows to explain the recurrence of microdeletions and microduplications caused by a non allelic homologous recombination involving segmental duplications created during the evolution of primates. This structural feature of the human genome is associated with a novel class of genetic diseases called genomic disorders as opposed to genetic diseases due to gene mutations. The study of the parental and cellular origin of aneuploidy shed new light on the different mechanisms controlling meiosis in man and woman. In addition it contributes to define the role of maternal age and genetic recombination on the behavior of chromosomes during meiosis. These new data greatly contribute to our understanding of human chromosomal diseases.  相似文献   
43.
44.
Waardenburg syndrome type 4 (WS4), also called Shah-Waardenburg syndrome, is a rare neurocristopathy that results from the absence of melanocytes and intrinsic ganglion cells of the terminal hindgut. WS4 is inherited as an autosomal recessive trait attributable to EDN3 or EDNRB mutations. It is inherited as an autosomal dominant condition when SOX10 mutations are involved. We report on three unrelated WS4 patients with growth retardation and an as-yet-unreported neurological phenotype with impairment of both the central and autonomous nervous systems and occasionally neonatal hypotonia and arthrogryposis. Each of the three patients was heterozygous for a SOX10 truncating mutation (Y313X in two patients and S251X [corrected] in one patient). The extended spectrum of the WS4 phenotype is relevant to the brain expression of SOX10 during human embryonic and fetal development. Indeed, the expression of SOX10 in human embryo was not restricted to neural-crest-derived cells but also involved fetal brain cells, most likely of glial origin. These data emphasize the important role of SOX10 in early development of both neural-crest-derived tissues, namely melanocytes, autonomic and enteric nervous systems, and glial cells of the central nervous system.  相似文献   
45.
46.
Joubert syndrome (JS) is an autosomal recessive disorder characterized by cerebellar vermis hypoplasia associated with hypotonia, developmental delay, abnormal respiratory patterns, and abnormal eye movements. The association of retinal dystrophy and renal anomalies defines JS type B. JS is a genetically heterogeneous condition with mutations in two genes, AHI1 and CEP290, identified to date. In addition, NPHP1 deletions identical to those that cause juvenile nephronophthisis have been identified in a subset of patients with a mild form of cerebellar and brainstem anomaly. Occipital encephalocele and/or polydactyly have occasionally been reported in some patients with JS, and these phenotypic features can also be observed in Meckel-Gruber syndrome (MKS). MKS is a rare, autosomal recessive lethal condition characterized by central nervous system malformations (typically, occipital meningoencephalocele), postaxial polydactyly, multicystic kidney dysplasia, and ductal proliferation in the portal area of the liver. Since there is obvious phenotypic overlap between JS and MKS, we hypothesized that mutations in the recently identified MKS genes, MKS1 on chromosome 17q and MKS3 on 8q, may be a cause of JS. After mutation analysis of MKS1 and MKS3 in a series of patients with JS (n=22), we identified MKS3 mutations in four patients with JS, thus defining MKS3 as the sixth JS locus (JBTS6). No MKS1 mutations were identified in this series, suggesting that the allelism is restricted to MKS3.  相似文献   
47.
Meckel syndrome (MKS) is a rare autosomal recessive lethal condition characterized by central nervous system malformations, polydactyly, multicystic kidney dysplasia, and ductal changes of the liver. Three loci have been mapped (MKS1MKS3), and two genes have been identified (MKS1/FLJ20345 and MKS3/TMEM67), whereas the gene at the MKS2 locus remains unknown. To identify new MKS loci, a genomewide linkage scan was performed using 10-cM–resolution microsatellite markers in eight families. The highest heterogeneity LOD score was obtained for chromosome 12, in an interval containing CEP290, a gene recently identified as causative of Joubert syndrome (JS) and isolated Leber congenital amaurosis. In view of our recent findings of allelism, at the MKS3 locus, between these two disorders, CEP290 was considered a candidate, and homozygous or compound heterozygous truncating mutations were identified in four families. Sequencing of additional cases identified CEP290 mutations in two fetuses with MKS and in four families presenting a cerebro-reno-digital syndrome, with a phenotype overlapping MKS and JS, further demonstrating that MKS and JS can be variable expressions of the same ciliopathy. These data identify a fourth locus for MKS (MKS4) and the CEP290 gene as responsible for MKS.  相似文献   
48.

Background

The nature of protective immune responses elicited by immunization with the candidate malaria vaccine RTS,S is still incompletely understood. Antibody levels correlate with protection against malaria infection, but considerable variation in outcome is unexplained (e.g., children may experience malaria despite high anti-circumsporozoite [CS] titers).

Methods and Findings

We measured the avidity index (AI) of the anti-CS antibodies raised in subgroup of 5–17 month old children in Kenya who were vaccinated with three doses of RTS,S/AS01E between March and August 2007. We evaluated the association between the AI and the subsequent risk of clinical malaria. We selected 19 cases (i.e., with clinical malaria) and 42 controls (i.e., without clinical malaria), matching for anti-CS antibody levels and malaria exposure. We assessed their sera collected 1 month after the third dose of the vaccine, in March 2008 (range 4–10 months after the third vaccine), and at 12 months after the third vaccine dose. The mean AI was 45.2 (95% CI: 42.4 to 48.1), 45.3 (95% CI: 41.4 to 49.1) and 46.2 (95% CI; 43.2 to 49.3) at 1 month, in March 2008 (4–10 months), and at 12 months after the third vaccination, respectively (p = 0.9 by ANOVA test for variation over time). The AI was not associated with protection from clinical malaria (OR = 0.90; 95% CI: 0.49 to 1.66; p = 0.74). The AI was higher in children with high malaria exposure, as measured using the weighted local prevalence of malaria, compared to those with low malaria exposure at 1 month post dose 3 (p = 0.035).

Conclusion

Our data suggest that in RTS,S/AS01E-vaccinated children residing in malaria endemic countries, the avidity of anti-circumsporozoite antibodies, as measured using an elution ELISA method, was not associated with protection from clinical malaria. Prior natural malaria exposure might have primed the response to RTS,S/AS01E vaccination.  相似文献   
49.
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.  相似文献   
50.
TGF-β1 induces differentiation and total inhibition of cardiac MyoFb cell division and DNA synthesis. These effects of TGF-β1 are irreversible. Inhibition of MyoFb proliferation is accompanied with the expression of Smad1, Mad1, p15Ink4B and total inhibition of telomerase activity. Surprisingly, TGF-β1-activated MyoFbs are growth-arrested not only at G1-phase but also at S-phase of the cell cycle. Staining with TUNEL indicates that these cells carry DNA damages. However, the absolute majority of MyoFbs are non-apoptotic cells as established with two apoptosis-specific methods, flow cytometry and caspase-dependent cleavage of cytokeratin 18. Expression in MyoFbs of proliferative cell nuclear antigen even in the absence of serum confirms that these MyoFbs perform repair of DNA damages. These results suggest that TGF-β1-activated MyoFbs can be growth-arrested by two checkpoints, the G1/S checkpoint, which prevents cells from entering S-phase and the intra-S checkpoint, which is activated by encountering DNA damage during the S phase or by unrepaired damage that escapes the G1/S checkpoint. Despite carrying of the DNA damages TGF-β1-activated MyoFbs are highly functional cells producing lysyl oxidase and contracting the collagen matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号