首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3575篇
  免费   371篇
  国内免费   2篇
  3948篇
  2023年   29篇
  2022年   69篇
  2021年   136篇
  2020年   79篇
  2019年   108篇
  2018年   104篇
  2017年   84篇
  2016年   152篇
  2015年   231篇
  2014年   205篇
  2013年   291篇
  2012年   329篇
  2011年   295篇
  2010年   183篇
  2009年   150篇
  2008年   201篇
  2007年   166篇
  2006年   167篇
  2005年   137篇
  2004年   108篇
  2003年   107篇
  2002年   90篇
  2001年   41篇
  2000年   35篇
  1999年   33篇
  1998年   24篇
  1997年   21篇
  1996年   8篇
  1995年   23篇
  1994年   16篇
  1993年   8篇
  1992年   17篇
  1991年   21篇
  1990年   20篇
  1989年   12篇
  1988年   21篇
  1987年   15篇
  1986年   18篇
  1985年   21篇
  1984年   8篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1979年   8篇
  1976年   9篇
  1975年   7篇
  1974年   11篇
  1972年   12篇
  1971年   7篇
  1968年   6篇
排序方式: 共有3948条查询结果,搜索用时 15 毫秒
101.
Medical educators and patients are turning to YouTube to teach and learn about medical conditions. These videos are from authors whose credibility cannot be verified & are not peer reviewed. As a result, studies that have analyzed the educational content of YouTube have reported dismal results. These studies have been unable to exclude videos created by questionable sources and for non-educational purposes. We hypothesize that medical education YouTube videos, authored by credible sources, are of high educational value and appropriately suited to educate the public. Credible videos about cardiovascular diseases were identified using the Mayo Clinic''s Center for Social Media Health network. Content in each video was assessed by the presence/absence of 7 factors. Each video was also evaluated for understandability using the Suitability Assessment of Materials (SAM). User engagement measurements were obtained for each video. A total of 607 videos (35 hours) were analyzed. Half of all videos contained 3 educational factors: treatment, screening, or prevention. There was no difference between the number of educational factors present & any user engagement measurement (p NS). SAM scores were higher in videos whose content discussed more educational factors (p<0.0001). However, none of the user engagement measurements correlated with higher SAM scores. Videos with greater educational content are more suitable for patient education but unable to engage users more than lower quality videos. It is unclear if the notion “content is king” applies to medical videos authored by credible organizations for the purposes of patient education on YouTube.  相似文献   
102.
Maize produces a suite of allelopathic secondary metabolites, the benzoxazinoids. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and 2,4-dihydroxy-2H-1,4-benzoxazin-3-one reside as glucosides in plant tissue and spontaneously degrade to 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA) upon plant cell disruption. Several maize-associated fungi in the genus Fusarium can metabolize MBOA and BOA. BOA tolerance levels in 10 species of Fusarium and in the maize endophytes Nigrospora oryzae, Acremonium zeae, and Periconia macrospinosa were characterized. BOA tolerance ranged from 0.25 to 1.10 mg/ml among species. The influence of substrate alteration by one species on the subsequent growth of another species was assessed in the presence and absence of BOA. The colony area of the secondary colonizer in heterospecific interactions was compared to that in autospecific interactions (one isolate follows itself). In the presence of BOA, four of six secondary colonizers had greater growth (facilitation) when primary colonizers had higher BOA tolerance than the secondary colonizer. When the primary colonizer had lower tolerance than the secondary, three of six secondary colonizers were inhibited (competition) and three not significantly affected. In BOA-free medium, the number of isolates that were facilitated or inhibited was the same regardless of the tolerance level of the primary colonizer. Two of six secondary colonizers were facilitated, two inhibited, and two not significantly affected. This study provides some support for facilitation in stressful conditions under the Menge-Sutherland model. The results are not consistent with the corresponding prediction of competition in the absence of stress. The hypothesis drawn from these data is that in the presence of a toxin, fungal species that detoxify their substrate can enhance the colonization rate of less tolerant fungi.  相似文献   
103.
It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations.  相似文献   
104.
Type X collagen is a homotrimeric, short chain, nonfibrillar collagen that is expressed exclusively by hypertrophic chondrocytes at the sites of endochondral ossification. The distribution and pattern of expression of the type X collagen gene (COL10A1) suggests that mutations altering the structure and synthesis of the protein may be responsible for causing heritable forms of chondrodysplasia. We investigated whether mutations within the human COL10A1 gene were responsible for causing the disorders achondroplasia, hypochondroplasia, pseudoachondroplasia, and thanatophoric dysplasia, by analyzing the coding regions of the gene by using PCR and the single-stranded conformational polymorphism technique. By this approach, seven sequence changes were identified within and flanking the coding regions of the gene of the affected persons. We demonstrated that six of these sequence changes were not responsible for causing these forms of chondrodysplasia but were polymorphic in nature. The sequence changes were used to demonstrate discordant segregation between the COL10A1 locus and achondroplasia and pseudoachondroplasia, in nuclear families. This lack of segregation suggests that mutations within or near the COL10A1 locus are not responsible for these disorders. The seventh sequence change resulted in a valine-to-methionine substitution in the carboxyl-terminal domain of the molecule and was identified in only two hypochondroplasic individuals from a single family. Segregation analysis in this family was inconclusive, and the significance of this substitution remains uncertain.  相似文献   
105.
Little is known about the requirements for human T-cell leukemia virus type 1 (HTLV-1) entry, including the identity of the cellular receptor(s). Previous studies have shown that although the HTLV receptor(s) are widely expressed on cell lines of various cell types from different species, cell lines differ dramatically in their susceptibility to HTLV-Env-mediated fusion. Human cells (293, HeLa, and primary CD4(+) T cells) showed higher levels of binding at saturation than rodent (NIH 3T3 and NRK) cells to an HTLV-1 SU immunoadhesin. A direct comparison of the binding of the HTLV-1 surface glycoprotein (SU) immunoadhesin and transduction by HTLV-1 pseudotyped virus revealed parallels between the level of binding and the titer for various cell lines. When cells were treated with phorbol myristate acetate (PMA), which down-modulates a number of cell surface molecules, the level of SU binding was markedly reduced. However, PMA treatment only slightly reduced the titer of murine leukemia virus(HTLV-1) on both highly susceptible and poorly susceptible cells. Treatment of target cells with trypsin greatly reduced binding, indicating that the majority of HTLV SU binding is to proteins. Polycations, which enhance the infectivity of several other retroviruses, inhibited HTLV-1 Env-mediated binding and entry on both human and rodent cells. These results suggest that factors other than the number of primary binding receptors are responsible for the differences in the titers of HTLV-1 pseudotypes between highly susceptible cells and poorly susceptible cells.  相似文献   
106.
The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H2O2 and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.The target of rapamycin, TOR, is a highly conserved serine/threonine kinase that is a critical regulator of cell growth. It is a core component of two signaling complexes, TORC1 and TORC2 (60, 74). TORC1 is defined by the presence of Raptor in the complex, while TORC2 contains Rictor. Rictor and Raptor are mutually exclusive. Activation of the TORC1 pathway leads to increased protein translation, increased cell size, and increased proliferation, making this pathway an important target for emerging cancer therapies. Rapamycin is an inhibitor of TORC1 that is commonly used as an immunosuppressant following kidney transplantation (51). At least three analogs of rapamycin are currently being tested in solid and hematological tumors and have shown some promising results (21).The TORC1 pathway responds to numerous inputs, sensing both the desirability of and the capacity for growth. Many of these pathways control TORC1 signaling through phosphorylation of the tuberous sclerosis protein TSC2. TSC2 associates with TSC1 to form a heterodimeric GTPase-activating protein complex (GAP) that inactivates the small GTPase Rheb (24, 29, 67). While the exact molecular mechanism remains a topic of debate, activation of Rheb promotes the kinase activity of TORC1 (24, 29, 67). Rheb is required for the activation of TORC1 in response to both amino acids and growth factors (55, 62). In Drosophila melanogaster, mutation of either TOR or Rheb inhibits growth, leading to reduced body size and reduced cell size in mutant clones (42, 64). Mutation of either TSC1 or TSC2 has the predicted opposite effect, as tissue deficient for either of these proteins overgrows and contains large cells (49, 66).TORC1 is activated via the phosphatidylinositol 3′ kinase (PI3′K) pathway by growth-promoting mitogens, such as insulin and growth factors. Drosophila mutants with mutations of PI3′K pathway components have size phenotypes similar to those of the TOR and Rheb mutants (71). In mammalian cells, the PI3′K-mediated activation of TORC1 occurs at least in part through the phosphorylation of TSC2 by the PI3′K target AKT (30, 50). Interestingly, mutation of these residues in Drosophila has no impact on TSC2 function in vivo, suggesting that there may be other mechanisms through which PI3′K can activate Drosophila TOR (20). Recent work has suggested that the proline-rich AKT substrate PRAS40 may provide part of this link (23, 59, 69, 70). In addition, signaling through RAS activates extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK), which can phosphorylate TSC2 and Raptor to activate TORC1 (13, 40, 56). There are also likely to be additional mechanisms through which growth factors activate Drosophila TOR that have not yet been identified.TORC1 activity is also controlled by the intracellular building blocks necessary to support cellular growth. The energy-sensing AMP-activated protein kinase (AMPK) pathway relays information about the energy status of the cell to TORC1 by phosphorylating TSC2. Unlike the inactivating phosphorylation of TSC2 by Akt, phosphorylation of TSC2 by AMPK promotes the GAP activity of the TSC complex (31). AMPK also phosphorylates Raptor, leading to decreased TORC1 activity (28). Thus, when energy levels are low, active AMPK inhibits TORC1.Amino acids also activate the TORC1 pathway, through a mechanism that requires Rheb, as well as the type III PI3′K VPS34 and the serine/threonine kinase mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3) (11, 22, 43). TORC1 thereby integrates information about the availability of amino acids and the amount of energy available for growth with growth factor signaling. Given its ancient function in adapting growth rates to environmental conditions, it is likely that TOR responds to a variety of stimuli, suggesting that many TOR control mechanisms remain to be uncovered. The Rag family of Ras-related small GTPases has recently been identified as a key component of the amino acid-sensing pathway, acting in parallel to Rheb (34, 58). Rag GTPases form heterodimers; RagA or RagB interacts with RagC or RagD. RagA and RagB are active when GTP bound, while RagC and RagD are active when bound to GDP (34, 58). Activation of the Rags by amino acids results in TOR relocalization to Rab7-containing vesicles (58). While the function of these vesicles in TORC1 signaling remains unclear, this relocalization is associated with increased TORC1 activity.TORC1 controls cell growth and translation through the phosphorylation and activation of components of the translational machinery, such as S6 kinase (S6K) and 4EBP1, an inhibitor of eukaryotic translation initiation factor 4E (eIF4E) activity (reviewed in reference 27). S6K phosphorylates the S6 ribosomal subunit, thereby increasing translation. Mice deficient for S6K1 are small and have small pancreatic beta cells and a correspondingly low level of circulating insulin (45). Mutation of the phosphorylation sites on S6 results in a similar phenotype, with small beta cells and fibroblasts (57). In Drosophila, mutation of S6K again reduces both cell and organism size (42), as does the overexpression of 4EBP (41).Interestingly, while mutation of the TORC1 pathway in mammalian cells reduces cell size by 10 to 15%, ablation of core TORC1 pathway components in Drosophila cells can affect cell size by up to 40% (73). In an attempt to identify novel components of the TORC1 pathway, we undertook an RNA interference (RNAi)-based screen of Drosophila S2 cells. We reasoned that the extreme size phenotypes observed in Drosophila cells upon TORC1 manipulations would facilitate the identification of modulators. In order to increase the likelihood of isolating novel regulators of TOR, we uncoupled TOR activity from many of its known nutritional controls by depleting TSC2 and screened for double-stranded RNAs (dsRNAs) that could reverse the cell size increase elicited by loss of TSC2. Depletion of multiple components of the p38 pathway was found to revert the TSC2 RNAi-induced cell size increase. Furthermore, activation of p38 is necessary and sufficient for the activation of TOR. Strikingly, mutation of components of the stress-activated p38 pathway in Drosophila has a similar phenotype to mutations in the TOR and insulin signaling pathway: a cell-autonomous cell size decrease, reduced body size, and a sensitization to the effects of nutritional stress.  相似文献   
107.
108.
The insulin mimic, peroxide of vanadate (pervanadate), stimulated 35S-methionine incorporation into Xenopus oocyte protein in a Mg2+-dependent manner. Reducing the extracellular Mg2+ concentration from 1.0 to 0.1 mM decreased the pervanadate-stimulated component of incorporation by 35%; with 0.01 mM Mg2+ or lower, the pervanadate-stimulated component was abolished. In addition, reducing extracellular Mg2+ to 0.01 mM inhibited about 50% of the insulinstimulated component of methionine incorporation. Mg2+ depletion had no effects on incorporation in controls or when protein synthesis was stimulated by Zn2+ or bovine growth hormone. Thus, not all substances that stimulated protein synthesis showed a dependence on extracellular Mg2+. Reducing extracellular Ca2+ had no effects on methionine incorporation in control cells or in cells stimulated by pervanadate or insulin. When oocytes maintained in a paraffin oil medium were brought into contact with a 0.5 m?I droplet of buffer containing the Mg2+ indicator dye, mag-fura-2, and pervanadate, apparent droplet Mg2+ decreased rapidly, indicating net uptake by the cells. Insulin also caused a net uptake of Mg2+. In contrast, apparent extracellular Mg2+ was constant when cells were in contact with droplets containing no effectors. Together, these data indicate that extracellular Mg2+, but not Ca2+, is involved in the stimulation of protein synthesis by pervanadate, and to a lesser extent by insulin. Pervanadate appears to induce a net uptake of Mg2+, and this change in membrane transport may be an early event in signalling the increase in translation. © 1995 Wiley-Liss, Inc.  相似文献   
109.
The antibiotic hypothesis proposes that ant pollination is rare at least in part because the cuticular antimicrobial secretions of ants are toxic to pollen grains. We tested this hypothesis by comparing the effects of ants and bees on pollen in two regions: a tropical rainforest in Amazonian Peru and temperate forests and old fields in Canada. We found support for three predictions that follow from the antibiotic hypothesis. (1) For all 10 ant and 11 plant species in our study, contact with ants significantly reduced pollen germination, confirming the generality of this effect. (2) Contact with two bee species did not have similar effects; pollen exposed to bees germinated as well as control pollen. (3) Consistent with the presumed greater abundance of entomopathogens in the tropics, which may have selected for stronger antibiotic secretions in tropical ants, tropical ants had more negative effects on pollen than temperate ants. We speculate that the antibiotic hypothesis contributes not only to the rarity but also to the biogeography of ant pollination, and we discuss whether the negative effects of ants on pollen have resulted in selection for floral defenses against ants.  相似文献   
110.
White rhinoceros (rhinos) is a keystone conservation species and also provides revenue for protection agencies. Restoring or mimicking the outcomes of impeded ecological processes allows reconciliation of biodiversity and financial objectives. We evaluate the consequences of white rhino management removal, and in recent times, poaching, on population persistence, regional conservation outcomes and opportunities for revenue generation. In Kruger National Park, white rhinos increased from 1998 to 2008. Since then the population may vary non-directionally. In 2010, we estimated 10,621 (95% CI: 8,767–12,682) white rhinos using three different population estimation methods. The desired management effect of a varying population was detectable after 2008. Age and sex structures in sink areas (focal rhino capture areas) were different from elsewhere. This comes from relatively more sub-adults being removed by managers than what the standing age distribution defined. Poachers in turn focused on more adults in 2011. Although the effect of poaching was not detectable at the population level given the confidence intervals of estimates, managers accommodated expected poaching annually and adapted management removals. The present poaching trend predicts that 432 white rhinos may be poached in Kruger during 2012. The white rhino management model mimicking outcomes of impeded ecological processes predicts 397 rhino management removals are required. At present poachers may be doing “management removals,” but conservationists have no opportunity left to contribute to regional rhino conservation strategies or generate revenue through white rhino sales. In addition, continued trends in poaching predict detectable white rhino declines in Kruger National Park by 2016. Our results suggest that conservationists need innovative approaches that reduce financial incentives to curb the threats that poaching poses to several conservation values of natural resources such as white rhinos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号