首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   20篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   16篇
  2020年   8篇
  2019年   13篇
  2018年   14篇
  2017年   14篇
  2016年   20篇
  2015年   23篇
  2014年   23篇
  2013年   38篇
  2012年   39篇
  2011年   31篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   15篇
  2006年   19篇
  2005年   6篇
  2004年   6篇
  2003年   9篇
  2002年   8篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1980年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有443条查询结果,搜索用时 718 毫秒
381.
382.
Serotonin 2C receptor (5-HT2CR) heterogeneity in the brain occurs mostly from two different sources: (i) 5-HT2CR mRNA undergoes adenosine-to-inosine editing events at five positions, which leads to amino acid substitutions that produce receptor variants with different pharmacological properties; (ii) 5-HT2CR mRNA is alternatively spliced, resulting in a truncated mRNA isoform (5-HT2CR-tr) which encodes a non-functional serotonin receptor. 5-HT2CR mRNA editing efficiencies and the expression of the full-length and the truncated 5-HT2CR mRNA splice isoforms were analyzed in the prefrontal cortex of elderly subjects with schizophrenia vs. matched controls (ns = 15). No significant differences were found, indicating that there are no alterations in editing or alternative splicing of 5-HT2CRs that are associated with schizophrenia in persons treated with antipsychotic medications. Quantitation of 5-HT2CR and 5-HT2CR-tr mRNA variants revealed that the expression of 5-HT2CR-tr was approximately 50% of that observed for the full-length isoform.  相似文献   
383.
A series of prostaglandin DP agonists containing a 3-oxa-15-cyclohexyl motif was synthesized and evaluated in several in vitro and in vivo biological assays. The reference compound ZK 118.182 (9beta-chloro-15-cyclohexyl-3-oxa-omega-pentanor PGF(2alpha)) is a potent full agonist at the prostaglandin DP receptor. Saturation of the 13,14 olefin affords AL-6556, which is less potent but is still a full agonist. Replacement of the 9-chlorine with a hydrogen atom or inversion of the carbon 15 stereochemistry also reduces affinity. In in vivo studies ZK 118.182 lowers intraocular pressure (IOP) upon topical application in the ocular hypertensive monkey. Ester, 1-alcohol, and selected amide prodrugs of the carboxylic acid enhance in vivo potency, presumably by increasing bioavailability. The clinical candidate AL-6598, the isopropyl ester prodrug of AL-6556, produces a maximum 53% drop in monkey IOP with a 1 microg dose (0.003% w/w) using a twice-daily dosing regime. Synthetically, AL-6598 was accessed from known intermediate 1 using a novel key sequence to install the cis allyl ether in the alpha chain, involving a selective Swern oxidative desilylation of a primary silyl ether in the presence of a secondary silyl ether. In this manner, 136 g of AL-6598 was synthesized under GMP conditions for evaluation in phase I clinical trials.  相似文献   
384.
The genetic factors that contribute to the development of coronary artery disease (CAD) are poorly understood. It is likely that multiple genes that act independently or synergistically contribute to the development of CAD and the outcome. Recently, an insertion/deletion (I/D) polymorphism of the human angiotensin I-converting enzyme (ACE) gene, a major component of the reninangiotensin system (RAS), was identified. The association of the ACE gene D allele with essential hypertension and CAD has been reported in the African-American, Chinese, and Japanese populations. However, other studies have failed to detect such an association. It has been suggested that these inconsistencies may be due to the difference in backgrounds of the population characteristics. In the present study, we investigated the I/D polymorphism of the ACE gene in 103 subjects of both sexes, consisting of 59 normal controls and 44 patients with hypertension. The allele and genotype frequency were significantly different between the hypertensive and control groups (p < 0.01). Among the three ACE I/D variants, the DD genotype was associated with the highest value of the mean systolic blood pressure [SBP] and mean diastolic blood pressure [DBP] (p = < 0.05) in men, but not in women. In the overall population, the mean SBP and DBP was highest in DD subjects, intermediate in I/D subjects, and the least in II subjects  相似文献   
385.
Oxidative stress induced by hydrogen peroxide (H2O2) may contribute to the pathogenesis of ischemic-reperfusion injury in the heart. For the purpose of investigating directly the injury potential of H2O2 on heart muscle, a cellular model of H2O2-induced myocardial oxidative stress was developed. This model employed primary monolayer cultures of intact, beating neonatal-rat cardiomy-ocytes and discrete concentrations of reagent H2O2 in defined, supplement-free culture medium. Cardiomyocytes challenged with H2O2 readily metabolized it such that the culture content of H2O2 diminished over time, but was not depleted. The consequent H2O2-induced oxidative stress caused lethal sarcolemmal disruption (as measured by lactate dehydrogenase release), and cardiomyocyte integrity could be preserved by catalase. During oxidative stress, a spectrum of cellular derangements developed, including membrane phospholipid peroxidation, thiol oxidation, consumption of the major chain-breaking membrane antiperoxidant (α-tocopherol), and ATP loss. No net change in the protein or phospholipid contents of cardiomyocyte membranes accompanied H2O2-induced oxidative stress, but an increased turnover of these membrane constituents occurred in response to H2O2. Development of lethal cardiomyocyte injury during H2O2-induced oxidative stress did not require the presence of H2O2 itself; a brief “pulse” exposure of the cardiomyocytes to H2O2 was sufficient to incite the pathogenic mechanism leading to cell disruption. Cardiomyocyte disruption was dependent upon an intracellular source of redox-active iron and the iron-dependent transformation of internalized H2O2 into products (e.g., the hydroxyl radical) capable of initiating lipid peroxidation, since iron chelators and hydroxyl-radical scavengers were cytoprotective. The accelerated turnover of cardiomyocyte-membrane protein and phospholipid was inhibited by antiperoxidants, suggesting that the turnover reflected molecular repair of oxidized membrane constituents. Likewise, the consumption of α-tocopherol and the oxidation of cellular thiols appeared to be epiphenomena of peroxidation. Antiperoxidant interventions coordinately abolished both H2O2-induced lipid peroxidation and sarcolemmal disruption, demonstrating that an intimate pathogenic relationship exists between sarcolemmal peroxidation and lethal compromise of cardiomyocyte integrity in response to H2O2-induced oxidative stress. Although sarcolemmal peroxidation was causally related to cardiomyocyte disruption during H2O2-induced oxidative stress, a nonperoxidative route of H2O2 cytotoxicity was also identified, which was expressed in the complete absence of cardiomyocyte-membrane peroxidation. The latter mode of H2O2-induced cardiomyocyte injury involved ATP loss such that membrane peroxidation and cardiomyocyte disruption on the one hand and cellular de-energization on the other could be completely dissociated. The cellular pathophysiology of H2O2 as a vectorial signal for cardiomyocyte necrosis that “triggers” irreversible peroxidative disruption of the sarcolemma has implications regarding potential mechanisms of oxidative injury in the postischemic heart.  相似文献   
386.
387.
The pharmacological basis of glutamate-induced [3H]D-aspartate release was investigated in isolated human, bovine and rabbit retinas. Isolated mammalian retinas were preloaded with [3H]D-aspartate and then prepared for studies of neurotransmitter release using the superfusion method. Release of [3H]D-aspartate was elicited by K+ (50 mM) or by L-glutamate. In bovine retinas, L-glutamate, but not D-glutamate induced an overflow of [3H]D-aspartate that was partially inhibited by low external calcium, -conotoxin (10 nM) or nitrendipine (1 M). Metabotropic glutamate receptor (GLUR) agonists also evoked [3H]D-aspartate release in both bovine and human retinas whereas polyamines only enhanced the excitatory effects of L-glutamate on [3H]D-aspartate release. Antagonists of GLURs and the polyamine site inhibited L-glutamate evoked [3H]D-aspartate overflow with the following rank order of potency: MCPG >ifenprodil > AP-5 > arcaine> MK-801. In conclusion, L-glutamate-induces a stereoselective, calcium-dependent release of [3H]D-aspartate from isolated mammalian retinas that can be mimicked by GLUR agonists (and blocked by both receptor and polyamine site antagonists).  相似文献   
388.
Abstract  In zucchini, the use of row covers until flowering and the insect growth regulator (IGR) pyriproxyfen are effective methods of reducing the number of insects, especially silverleaf whitefly ( Bemisia tabaci (Gennadius) Biotype B), on plants. We compared floating row covers (FRCs) up until flowering with silverleaf whitefly (SLW) introduced (FRC + SLW), or not introduced (FRC-only), or with introduction of SLW in open plots (SLW-only), or with introduction of SLW in open plots with IGR (SLW + IGR). FRC increased temperature and humidity compared with the uncovered treatments. Average fruit weight was less ( P  < 0.01) for the FRC + SLW treatment compared with the other treatments and the percentage of marketable fruit was less for the FRC + SLW than for the other three treatments. This result indicates that the use of either row covers or IGR controls whiteflies, reduces fruit damage and increases the size, weight, and quality of fruit, and may also control other sap-sucking insects. However, if SLW are already present on plants, the use of FRC may reduce predation and favour build up of SLW. Thus, FRC and IGR, if used judiciously, may provide an effective alternative to broad-spectrum pesticides in small-scale cucurbit production.  相似文献   
389.
Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca2+. Thus, it would be clinically relevant to know the targets of this aberrant Ca2+ signal. We hypothesized that the Ca2+-activated phosphatase calcineurin is such a Ca2+ target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca2+. Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aβ (CnAβ) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca2+ generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.  相似文献   
390.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号