首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1716篇
  免费   99篇
  国内免费   4篇
  1819篇
  2024年   7篇
  2023年   17篇
  2022年   58篇
  2021年   76篇
  2020年   36篇
  2019年   45篇
  2018年   58篇
  2017年   55篇
  2016年   71篇
  2015年   96篇
  2014年   114篇
  2013年   124篇
  2012年   163篇
  2011年   159篇
  2010年   81篇
  2009年   62篇
  2008年   94篇
  2007年   62篇
  2006年   67篇
  2005年   63篇
  2004年   50篇
  2003年   42篇
  2002年   29篇
  2001年   13篇
  2000年   16篇
  1999年   13篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1978年   3篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1967年   3篇
排序方式: 共有1819条查询结果,搜索用时 15 毫秒
141.
The most common, devastating problem in agriculture is plant (pathogenic) diseases and abiotic conditions which have a profound effect on growth and yield of the plant resulting in heavy losses. In order to prevent losses, different chemicals are used indiscriminately, which in turn lead to environmental pollution due to their persistence and toxicity yet employed to meet consumer demand. To fight ever increasing demand and indiscriminate use of chemical agents along with their devastating after effects in agriculture, we need less invasive, eco-friendly and most importantly sustainable practices. Plant growth promoting rhizobacteria (PGPR) influence different physiological activities of the plant through various mechanisms (metabolites, antibiotics, Induced Systemic Resistance and enzymes) and impart protection from pathogens as well as environmental stress factors. But, current applications are limited in this regard as mechanisms involved, field applications variance and lack of farmer awareness contributing majorly. Current review tries to provide comprehensive knowledge on the PGPR’s applications as plant protectant against pathogens & abiotic factors leading to sustainable agricultural practices.  相似文献   
142.
143.
144.
BackgroundAfter a multi-country Asian outbreak of cholera due to Vibrio cholerae serogroup O139 which started in 1992, it is rarely detected from any country in Asia and has not been detected from patients in Africa.Methodology/Principal findingsWe extracted surveillance data from the Dhaka and Matlab Hospitals of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) to review trends in isolation of Vibrio cholerae O139 in Bangladesh. Data from the Dhaka Hospital is a 2% sample of > 100,000 diarrhoeal patients treated annually. Data from the Matlab Hospital includes all diarrhoeal patients who hail from the villages included in the Matlab Health and Demographic Surveillance System. Vibrio cholerae O139 was first isolated in Dhaka in 1993 and had been isolated every year since then except for a gap between 2005 and 2008. An average of thirteen isolates was detected annually from the Dhaka Hospital during the last ten years, yielding an estimated 650 cases annually at this hospital. During the last ten years, cases due to serogroup O139 represented 0.47% of all cholera cases; the others being due to serogroup O1. No cases with serogroup O139 were identified at Matlab since 2006. Clinical signs and symptoms of cholera due to serogroup O139 were similar to cases due to serogroup O1 though more of the O139 cases were not dehydrated. Most isolates of O139 remained sensitive to tetracycline, ciprofloxacin, and azithromycin, but they became resistant to erythromycin starting in 2009.Conclusions/SignificanceCholera due to Vibrio cholerae serogroup O139 continues to cause typical cholera in Dhaka, Bangladesh.  相似文献   
145.
The AE1 mutation G701D, associated with recessive distal renal tubular acidosis (dRTA), produces only minimal erythroid phenotype, reflecting erythroid-specific expression of stimulatory AE1 subunit glycophorin A (GPA). GPA transgene expression could theoretically treat recessive dRTA in patients and in mice expressing cognate Ae1 mutation G719D. However, human (h) GPA and mouse (m) Gpa amino acid sequences are widely divergent, and mGpa function in vitro has not been investigated. We therefore studied in Xenopus oocytes the effects of coexpressed mGpa and hGPA on anion transport by erythroid (e) and kidney (k) isoforms of wild-type mAe1 (meAe1, mkAe1) and of mAe1 mutant G719D. Coexpression of hGPA or mGpa enhanced the function of meAe1 and mkAe1 and rescued the nonfunctional meAe1 and mkAe1 G719D mutants through increased surface expression. Progressive N-terminal truncation studies revealed a role for meAe1 amino acids 22-28 in GPA-responsiveness of meAe1 G719D. MouseN-cyto/humanTMD and humanN-cyto/mouseTMD kAE1 chimeras were active and GPA-responsive. In contrast, whereas chimera mkAe1N-cyto/hkAE1 G701DTMD was GPA-responsive, chimera hkAE1N-cyto/mkAe1 G719DTMD was GPA-insensitive. Moreover, whereas the isolated transmembrane domain (TMD) of hAE1 G701D was GPA-responsive, that of mAe1 G719D was GPA-insensitive. Thus, mGpa increases surface expression and activity of meAe1 and mkAe1. However, the G719D mutation renders certain mAe1 mutant constructs GPA-unresponsive and highlights a role for erythroid-specific meAe1 amino acids 22-28 in GPA-responsiveness.  相似文献   
146.
147.

Background  

The origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility.  相似文献   
148.
Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.  相似文献   
149.
Obesity in humans and mice is typified by an activated macrophage phenotype in the visceral adipose tissue (VAT) leading to increased macrophage-mediated inflammation. microRNAs (miRNAs) play an important role in regulating inflammatory pathways in macrophages, and in this study we compared miRNA expression in the VAT of insulin resistant morbidly obese humans to a non-obese cohort with normal glucose tolerance. miR-223-3p was found to be significantly upregulated in the whole omental tissue RNA of 12 human subjects, as were 8 additional miRNAs. We then confirmed that miR-223 upregulation was specific to the stromal vascular cells of human VAT, and found that miR-223 levels were unchanged in adipocytes and circulating monocytes of the non-obese and obese. miR-223 ablation increased basal / unstimulated TLR4 and STAT3 expression and LPS-stimulated TLR4, STAT3, and NOS2 expression in primary macrophages. Conversely, miR-223 mimics decreased TLR4 expression in primary macrophage, at the same time it negatively regulated FBXW7 expression, a well described suppressor of Toll-like receptor 4 (TLR4) signaling. We concluded that the abundance of miR-223 in macrophages significantly modulates macrophage phenotype / activation state and response to stimuli via effects on the TLR4/FBXW7 axis.  相似文献   
150.
The presence of marker genes conferring antibiotic or herbicide resistance in transgenic plants has been a controversial issue and a serious problem for their public acceptance and commercialization. The MAT (multi-auto-transformation) vector system has been one of the strategies developed to excise the selection marker gene and produce marker-free transgenic plants. In an attempt to produce transgenic marker-free Petunia hybrida plants resistant to Botrytis cinerea (gray mold), we used the ipt gene as a selectable marker gene and the wasabi defensin (WD) gene, isolated from Wasabia japonica (a Japanese horseradish which has been a potential source of antimicrobial proteins), as a gene of interest. The WD gene was cloned from the binary vector, pEKH-WD, to an ipt-type MAT vector, pMAT21, by gateway cloning technology and transferred to Agrobacterium tumefaciens strain EHA105. Infected leaf explants of P. hybrida were cultured on hormone- and antibiotic-free MS medium. Extreme shooty phenotype (ESP)/ipt shoots were produced by the explants infected with the pMAT21-WD. The same antibiotic- and hormone-free MS medium was used in subcultures of the ipt shoots. Ipt shoots subsequently produced morphologically normal shoots. Molecular analyses of genomic DNA from the transgenic plants confirmed the integration of the gene of interest and excision of the selection marker. Expression of the WD gene was confirmed by northern blot and western blot analyses. A disease resistance assay of the marker-free transgenic plants exhibited enhanced resistance against B. cinerea strain 40 isolated from P. hybrida.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号