首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   107篇
  1123篇
  2022年   16篇
  2021年   24篇
  2020年   14篇
  2019年   13篇
  2018年   22篇
  2017年   15篇
  2016年   31篇
  2015年   26篇
  2014年   28篇
  2013年   34篇
  2012年   43篇
  2011年   44篇
  2010年   26篇
  2009年   19篇
  2008年   31篇
  2007年   15篇
  2006年   25篇
  2005年   29篇
  2004年   38篇
  2003年   35篇
  2002年   34篇
  2001年   15篇
  2000年   20篇
  1999年   18篇
  1998年   9篇
  1996年   13篇
  1994年   9篇
  1992年   13篇
  1991年   11篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1986年   12篇
  1985年   9篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   17篇
  1980年   11篇
  1979年   8篇
  1978年   13篇
  1976年   11篇
  1975年   9篇
  1974年   8篇
  1973年   12篇
  1972年   14篇
  1971年   11篇
  1970年   8篇
  1968年   9篇
  1965年   8篇
排序方式: 共有1123条查询结果,搜索用时 0 毫秒
991.
Sydney Brenner 《Genetics》2009,182(2):413-415
The replicative life span (RLS) of Saccharomyces cerevisiae has been established as a model for the genetic regulation of longevity despite the inherent difficulty of the RLS assay, which requires separation of mother and daughter cells by micromanipulation after every division. Here we present the mother enrichment program (MEP), an inducible genetic system in which mother cells maintain a normal RLS—a median of 36 generations in the diploid MEP strain—while the proliferative potential of daughter cells is eliminated. Thus, the viability of a population over time becomes a function of RLS, and it displays features of a survival curve such as changes in hazard rate with age. We show that viability of mother cells in liquid culture is regulated by SIR2 and FOB1, two opposing regulators of RLS in yeast. We demonstrate that viability curves of these short- and long-lived strains can be easily distinguished from wild type, using a colony formation assay. This provides a simplified screening method for identifying genetic or environmental factors that regulate RLS. Additionally, the MEP can provide a cohort of cells at any stage of their life span for the analysis of age-associated phenotypes. These capabilities effectively remove the hurdles presented by RLS analysis that have hindered S. cerevisiae aging studies since their inception 50 years ago.THE budding yeast Saccharomyces cerevisiae is a popular model system for studying fundamental processes of cellular aging (reviewed in Steinkraus et al. 2008). Analyses over the past 50 years have led to the idea that budding yeast can be used to study three types of cellular aging. Replicative aging describes the division potential of individual cells and relies on the asymmetric cell divisions of budding yeast that yield distinct mother and daughter cells. Replicative life span (RLS) is defined as the number of times an individual cell divides before it undergoes senescence (Mortimer and Johnston 1959). Chronological aging describes the capacity of cells in stationary phase (analogous to G0 in higher eukaryotes) to maintain viability over time, which is assayed by their ability to reenter the cell cycle when nutrients are reintroduced (Longo et al. 1996). Finally, budding yeast have been used to study clonal senescence, which is analogous to the Hayflick limit imposed on mammalian tissue culture cells and characterized by a finite number of times a population of cells can divide. Although wild-type yeast populations do not senesce, this phenomenon has been observed in mutant strains such as those lacking telomerase components (Lundblad and Szostak 1989; Singer and Gottschling 1994).While genetic screens have been applied to examine clonal and chronological aging (Lundblad and Szostak 1989; Powers et al. 2006; Murakami et al. 2008), they have been limited in their application to studying replicative aging (Kaeberlein and Kennedy 2005; Kaeberlein et al. 2005b). This limitation arises from the arduous nature of isolating replicatively aged yeast cells. The current “gold standard” for isolating aged mother cells is by micromanipulation, where daughter cells are counted and removed after every division (Park et al. 2002). Although micromanipulation is currently the only method capable of accurately measuring RLS in yeast, it is severely constrained by the small number of cells that can be analyzed. Thus, genetic analysis of the regulation of RLS has been limited to a candidate gene approach (reviewed in Steinkraus et al. 2008).True genetic analysis of RLS will require large populations of aged cells. However, there are two confounding issues that make isolation of aged individuals difficult. First, single-cell pedigree analysis has shown that age-associated phenotypes, such as replicative life span potential, segregate asymmetrically between mother and daughter cells, rendering age-associated phenotypes nonheritable (Egilmez and Jazwinski 1989; Kennedy et al. 1994). Thus, daughter cells are generally “reset” to a young state with every generation. Second, when age is measured in terms of cell divisions, an unfractionated population is predominately young. The fraction of the population at an age of n cell divisions is ∼1/2n. Individual cells that reach the median RLS, which is ∼26 generations for haploid cells of the S288C strain background (Kaeberlein et al. 2005a), represent an insignificant fraction of the total population. In fact, it is unlikely that any cell reaches such an advanced age because nutrient depletion will limit the division potential of the population (Dickinson and Schweizer 1999).As an alternative to micromanipulation, methods were developed to isolate aged cells from liquid cultures (Smeal et al. 1996; Sinclair and Guarente 1997; Chen and Contreras 2007). However, due to the exponential growth of progeny cells, these populations are technically limited to 7–12 generations before nutrient depletion interferes with replicative aging. While sequential rounds of growth and purification are possible, the inability to continuously follow an undisturbed cohort of cells prevents the measurement of RLS by these methods. Instead, purification methods are primarily used for the examination of molecular changes associated with aging cells. Unfortunately, low yields and loss of viability due to purification methods diminish their utility for analyzing phenotypes that affect cells of advanced age. As an alternative to purification from natural populations, a strategy to genetically regulate the replicative capacity of daughter cells and avoid the limits imposed by exponential growth has been described (Jarolim et al. 2004). While this system effectively prevents division of daughter cells, it unintentionally decreases the median RLS of mother cells to four cell divisions, thus restricting its usefulness.Here we describe the development of a novel genetic selection against newborn daughter cells, the “mother enrichment program” (MEP), which restricts the replicative capacity of daughter cells while allowing mother cells to achieve a normal RLS. We demonstrate that upon induction of the selection, the viability of MEP strains growing in liquid culture is determined by the RLS of the initial population of mother cells. MEP cultures therefore allow the comparison of RLS between strains without the need for micromanipulation. Additionally, because MEP cultures are not subject to nutrient limitation, single-step affinity purification of aged cells can be achieved at any point during their life span. Together, these capabilities substantially resolve the technical hurdles that have made replicative aging studies in S. cerevisiae exceptionally challenging.  相似文献   
992.
993.
994.
This essay recounts a controversy between a pioneer electrophysiologist, Emil du Bois-Reymond (1818-1896), and his student, Ludimar Hermann (1838-1914). Du Bois-Reymond proposed a molecular explanation for the slight electrical currents that he detected in frog muscles and nerves. Hermann argued that du Bois-Reymond's 'resting currents' were an artifact of injury to living tissue. He contested du Bois-Reymond's molecular model, explaining his teacher's observations as electricity produced by chemical decomposition. History has painted Hermann as the wrong party in this dispute. I seek to set the record straight.  相似文献   
995.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   
996.
This Letter describes the synthesis and structure–activity-relationships (SAR) of isoform-selective PLD inhibitors. By virtue of the installation of alternative halogenated piperidinyl benzimidazolone privileged structures, in combination with a key (S)-methyl group, novel PLD inhibitors with low nM potency and unprecedented levels of PLD1 isoform selectivity (~1700-fold) over PLD2 were developed.  相似文献   
997.
In this study, the susceptibility to amphotericin B of Candida spp. isolates obtained from patients with candidemia was related to their respective clinical outcomes. The susceptibility tests were carried out in three culture media: RPMI 1640, Antibiotic medium 3 and Yeast Nitrogen Base dextrose. We have found that minimal inhibitory concentrations and minimal fungicidal concentrations obtained using AM3 and YNBd media were significantly higher for Candida spp. from patients who died than for those from patients who survived the candidemia (P < 0.05). The assays with RPMI 1640 medium did not show these differences.  相似文献   
998.
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.Diverse soil bacteria interact with plants in ways that range from symbiotic to pathogenic. Symbiotic Eubacteria (both alpha- and betaproteobacteria, collectively called rhizobia) form nitrogen-fixing associations of tremendous environmental importance (41, 66). Although some rhizobia are able to reduce atmospheric nitrogen to ammonia under saprophytic, free-living conditions, the reduced oxygen tensions found within the intracellular environment of specialized organs called nodules, maximizes this process (16). As legume roots penetrate the soil, they come in contact with rhizobia. Symbiotic interactions are initiated by the exchange of diverse molecules between the partners. Among them, plants liberate flavonoids into the rhizosphere that upregulate rhizobial genes. As a result, lipo-chito-oligo-saccharidic Nod factors are produced that trigger the nodulation pathway in susceptible legumes. Then, in many hosts, rhizobia enter the roots through root hairs, make their way to the cortex, multiply and fill the intracellular spaces of mature nodules. Centripetal progression of rhizobia into the plant and their maturation into nitrogen-fixing symbiosomes depends on the continued exchange of diverse signals. Many, but not all of these signals have been identified; one sure way to take stock of what is necessary for effective symbiosis is to sequence the partners. We began this work by assembling overlapping sets of cosmids (contigs) of the microsymbiont Rhizobium sp. strain NGR234 (hereafter NGR234) (63), which enabled us to elucidate the nucleotide sequence of the symbiotic (pNGR243a) plasmid (29). Similar techniques permitted the assembly of sections of the extremely large megaplasmid pNGR234b (86), and some snapshot genome information was made available earlier (91); however, the use of pyrosequencing methods greatly facilitated this process. We report here the genome sequence of NGR234 that is able to nodulate more than 120 genera of legumes and the nonlegume Parasponia andersonii (69). It seems likely that the vast richness of secretory systems might be a major key to the broad host range.  相似文献   
999.
The Rut pathway is composed of seven proteins, all of which are required by Escherichia coli K-12 to grow on uracil as the sole nitrogen source. The RutA and RutB proteins are central: no spontaneous suppressors arise in strains lacking them. RutA works in conjunction with a flavin reductase (RutF or a substitute) to catalyze a novel reaction. It directly cleaves the uracil ring between N-3 and C-4 to yield ureidoacrylate, as established by both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Although ureidoacrylate appears to arise by hydrolysis, the requirements for the reaction and the incorporation of 18O at C-4 from molecular oxygen indicate otherwise. Mass spectrometry revealed the presence of a small amount of product with the mass of ureidoacrylate peracid in reaction mixtures, and we infer that this is the direct product of RutA. In vitro RutB cleaves ureidoacrylate hydrolytically to release 2 mol of ammonium, malonic semialdehyde, and carbon dioxide. Presumably the direct products are aminoacrylate and carbamate, both of which hydrolyze spontaneously. Together with bioinformatic predictions and published crystal structures, genetic and physiological studies allow us to predict functions for RutC, -D, and -E. In vivo we postulate that RutB hydrolyzes the peracid of ureidoacrylate to yield the peracid of aminoacrylate. We speculate that RutC reduces aminoacrylate peracid to aminoacrylate and RutD increases the rate of spontaneous hydrolysis of aminoacrylate. The function of RutE appears to be the same as that of YdfG, which reduces malonic semialdehyde to 3-hydroxypropionic acid. RutG appears to be a uracil transporter.The rut (pyrimidine utilization) operon of Escherichia coli K-12 contains seven genes (rutA to -G) (31, 38). A divergently transcribed gene (rutR) codes for a regulator. The RutR regulator is now known to control not only pyrimidine degradation but also pyrimidine biosynthesis and perhaps a number of other things (44, 45). In the presence of uracil, RutR repression of the rut operon is relieved.Superimposed on specific regulation of the rut operon by RutR is general control by nitrogen regulatory protein C (NtrC), indicating that the function of the Rut pathway is to release nitrogen (31, 59). The rut operon was discovered in E. coli K-12 as one of the most highly expressed operons under NtrC control. In vivo it yields 2 mol of utilizable nitrogen per mol of uracil or thymine and 1 mol of 3-hydroxypropionic acid or 2-methyl 3-hydroxypropionic acid, respectively, as a waste product (Fig. (Fig.1).1). Waste products are excreted into the medium. (Lactic acid is 2-hydroxypropionic acid.) Wild-type E. coli K-12 can use uridine as the sole nitrogen source at temperatures up to 22°C but not higher. It is chemotactic to pyrimidine bases by means of the methyl-accepting chemoreceptor TAP (taxis toward dipeptides), but this response is not temperature dependent (30).Open in a separate windowFIG. 1.Comparison of Rut pathway products (E. coli K-12) to those of other pyrimidine catabolic pathways. (A) The Rut pathway, which has been studied only in vivo in E. coli K-12 (31); (B) known reductive (52) and oxidative (22, 28, 48) pathways for catabolism of pyrimidine rings (upper and lower pathways, respectively). Although the enzyme that initiates the oxidative pathway was originally called uracil oxidase, it is a classical monooxygenase (28). An additional pathway (not shown) has recently been proposed in Saccharomyces kluyveri (1).In the known reductive and oxidative pathways for degradation of the pyrimidine ring (22, 48, 52), the C-5-C-6 double bond is first altered to decrease the aromatic character of the ring, and it is then hydrolyzed between N-3 and C-4 (Fig. (Fig.1).1). We here show that in the Rut pathway the ring is immediately cleaved between N-3 and C-4 by the RutA protein without prior manipulation and hence that RutA is an unusual oxygenase of a type not previously described. We determine the products of the RutB reaction and show that RutA/F and RutB are sufficient to release both moles of ammonium from the pyrimidine ring in vitro. Together with the known short-chain dehydrogenase YdfG (18), they yield all of the Rut products obtained in vivo.We use a variety of approaches other than biochemical assays to explore the functions of RutC, -D, and -E. Although these proteins are not required in vitro, they are required in vivo for growth on uridine as the sole nitrogen source and appear to accelerate removal of toxic intermediates in the Rut pathway or their by-products. We present genetic and physiological evidence that the toxicity of the last Rut intermediate, malonic semialdehyde, rather than the rate of release of ammonium, limits growth on pyrimidines as the sole nitrogen source at high temperatures.  相似文献   
1000.
Enzymes that salvage 6-oxopurines, including hypoxanthine phosphoribosyltransferases (HPRTs), are potential targets for drugs in the treatment of diseases caused by protozoan parasites. For this reason, a number of high-resolution X-ray crystal structures of the HPRTs from protozoa have been reported. Although these structures did not reveal why HPRTs need to form dimers for catalysis, they revealed the existence of potentially relevant interactions involving residues in a loop of amino acid residues adjacent to the dimer interface, but the contributions of these interactions to catalysis remained poorly understood. The loop, referred to as active-site loop I, contains an unusual non-proline cis-peptide and is composed of residues that are structurally analogous with Leu67, Lys68, and Gly69 in the human HPRT. Functional analyses of site-directed mutations (K68D, K68E, K68N, K68P, and K68R) in the HPRT from Trypanosoma cruzi, etiologic agent of Chagas' disease, show that the side-chain at position 68 can differentially influence the K(m) values for all four substrates as well as the k(cat) values for both IMP formation and pyrophosphorolysis. Also, the results for the K68P mutant are inconsistent with a cis-trans peptide isomerization-assisted catalytic mechanism. These data, together with the results of structural studies of the K68R mutant, reveal that the side-chain of residue 68 does not participate directly in reaction chemistry, but it strongly influences the relative efficiencies for IMP formation and pyrophosphorolysis, and the prevalence of lysine at position 68 in the HPRT of the majority of eukaryotes is consistent with there being a biological role for nucleotide pyrophosphorolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号