首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   108篇
  2022年   16篇
  2021年   24篇
  2020年   14篇
  2019年   13篇
  2018年   22篇
  2017年   15篇
  2016年   31篇
  2015年   26篇
  2014年   28篇
  2013年   34篇
  2012年   43篇
  2011年   44篇
  2010年   26篇
  2009年   19篇
  2008年   31篇
  2007年   15篇
  2006年   25篇
  2005年   29篇
  2004年   38篇
  2003年   35篇
  2002年   34篇
  2001年   15篇
  2000年   20篇
  1999年   18篇
  1998年   9篇
  1996年   13篇
  1994年   9篇
  1992年   13篇
  1991年   11篇
  1990年   16篇
  1989年   16篇
  1988年   10篇
  1986年   12篇
  1985年   9篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   17篇
  1980年   11篇
  1979年   8篇
  1978年   13篇
  1976年   11篇
  1975年   9篇
  1974年   8篇
  1973年   12篇
  1972年   14篇
  1971年   11篇
  1970年   8篇
  1968年   9篇
  1965年   8篇
排序方式: 共有1123条查询结果,搜索用时 15 毫秒
31.
Summary A study has been made of the insertional properties of transposon Tn7, a 14 kilobase transposable element encoding resistances to trimethoprim, streptomycin and specitinomycin. It has previously been shown that Tn7 transposes at a low frequency and with low specificity into multiple sites in large transmissible plasmids. However, Tn7 transposes with extrame specificity and at high efficiency into the E. coli chromosome. In all cases we have studied, insertion of Tn7 into the chromosome has occurred at a unique site and with a unique orientation. A combination of genetic and biochemical techniques have been used to precisely locate this site on the E. coli chromosome to minute 82 on the linkage map between markers glmS and uncA.To investigate the nature of this highly specific transpositional event, a small region of the E. coli chromosome that includes the unique site, was cloned into the plasmid vector pBR322. Subsequently a lkb restriction fragment, including the Tn7 insertion site, was sub-cloned from this plasmid into the plasmid pACYC184. We show that Tn7 transposes into both these plasmid recombinants with the frequency and specificity characteristie of the E. coli chromosome.  相似文献   
32.
Summary When present at nanomolar concentrations on one side of a lipid bilayer membrane,helianthus toxin (a protein of mol wt16,000) increases enormously membrane permeability to ions and nonelectrolytes by forming channels in the membrane. Membranes containing sphingomyelin are especially sensitive to toxin, but sphingomyelin isnot required for toxin action. Conductance is proportional to about the 4th power of toxin concentration. Single channel conductances are approximately 2×10–10 mho in 0.1m KCl. Toxin-treated membranes are more permeable to K+ and Na+ than to Cl and SO 4 = , but the degree of selectivity is pH dependent. Above pH 7 membranes are almost ideally selective for K+ with respect to SO 4 = , whereas below pH 4 they are poorly selective. The channels show classical molecular sieving for urea, glycerol, glucose, and sucrose — implying a channel radius >5 Å. In symmetrical salt solutions above pH 7, theI–V characteristic of the channel shows significant rectification: below pH 5 there is very little rectfication. Because of the effects of pH on ion selectivity and channel conductance, and also because of the rectification in symmetrical salt solutions and the effect of pH on this, we conclude that there are titratable negative charge groups in the channel modulating ion permeability and selectivity. Since pH changes on the side containing the toxin are effective whereas pH changes on the opposite side are not, we place these negative charges near the mouth of the channel facing the solution to which toxin was added.  相似文献   
33.
34.
Summary We have incorporated into planar lipid bilayer membranes a voltage-dependent, anion-selective channel (VDAC) obtained fromParamecium aurelia. VDAC-containing membranes have the following properties: (1) The steady-state conductance of a many-channel membrane is maximal when the transmembrane potential is zero and decreases as a steep function of both positive and negative voltage. (2) The fraction of time that an individual channel stays open is strongly voltage dependent in a manner that parallels the voltage dependence of a many-channel membrane. (3) The conductance of the open channel is about 500 pmho in 0.1 to 1.0m salt solutions and is ohmic. (4) The channel is about 7 times more permeable to Cl than to K+ and is impermeable to Ca++. The procedure for obtaining VDAC and the properties of the channel are highly reproducible.VDAC activity was found, upon fractionation of the paramecium membranes, to come from the mitochondria. We note that the published data on mitochondrial Cl permeability suggest that there may indeed be a voltage-dependent Cl permeability in mitochondria.The method of incorporating VDAC into planar lipid bilayers may be generally useful for reconstituting biological transport systems in these membranes.  相似文献   
35.
A comparison has been made of the in vitro DNA-binding proteins of specific aneuploid and isogenic euploid cells of Saccharomyces cerevisiae by DNA-cellulose chromatography. We have been able to detect changes in the level of a small fraction of the yeast DNA-binding proteins which can be related to the dosage of specific yeast chromosomes. At least four proteins show a dosage related to the cellular level of chromosome I and at least one protein shows a dosage related to the level of chromosome VI.  相似文献   
36.
Very low density and high density lipoproteins have been isolated from human plasma and their interaction with 1-anilin0-8-naphthalene sulfonate has been studied under different conditions of pH and added salt. Intrinsic fluorescence of bound 1-anilino-8-naphthalene sulfonate was higher for high density lipoproteins then for very low density lipoproteins, but was unaffected by salt in both systems. Binding of 1-anilino-8-naphthalene sulfonate by both these lipoproteins was saturable and was higher in the presence of added NaCl or CaCl2, Ca2+ having a greater effect than Na+ in enhancing fluorescence. The binding data were analyzed by Scatchard plots; the number of binding sites and the affinity of 1-anilino-8-naphthalene sulfonate for the site increased with increasing salt concentration. Fluorescence pH curves were similar to those published for phospholipids. From these and previous observations it is suggested that the phospholipids probably represent the major binding sites for 1-anilino-8-naphthalene sulfonate.  相似文献   
37.
T cells are critically dependent on cellular proliferation in order to carry out their effector functions. Autoimmune strains are commonly thought to have uncontrolled T cell proliferation; however, in the murine model of autoimmune diabetes, hypo-proliferation of T cells leading to defective AICD was previously uncovered. We now determine whether lupus prone murine strains are similarly hyporesponsive. Upon extensive characterization of T lymphocyte activation, we have observed a common feature of CD4 T cell activation shared among three autoimmune strains–NOD, MRL, and NZBxNZW F1s. When stimulated with a polyclonal mitogen, CD4 T cells demonstrate arrested cell division and diminished dose responsiveness as compared to the non-autoimmune strain C57BL/6, a phenotype we further traced to a reliance on B cell mediated costimulation, which underscores the success of B cell directed immune therapies in preventing T cell mediated tissue injury. In turn, the diminished proliferative capacity of these CD4 T cells lead to a decreased, but activation appropriate, susceptibility to activation induced cell death. A similar decrement in stimulation response was observed in the CD8 compartment of NOD mice; NOD CD8 T cells were distinguished from lupus prone strains by a diminished dose-responsiveness to anti-CD3 mediated stimulation. This distinction may explain the differential pathogenetic pathways activated in diabetes and lupus prone murine strains.  相似文献   
38.
39.
Immune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of “non-self”) or damaged plant cells (indicative of “infected-self”), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance. Immune responses are under tight regulation in order to maintain homeostasis and promote plant health. In a forward-genetic screen to identify regulators of PRR-mediated immune signaling, we identified a novel allele of the membrane-attack complex and perforin (MACPF)-motif containing protein CONSTITUTIVE ACTIVE DEFENSE 1 (CAD1) resulting from a missense mutation in a conserved N-terminal cysteine. We show that cad1-5 mutants display deregulated immune signaling and symptoms of autoimmunity dependent on the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), suggesting that CAD1 integrity is monitored by the plant immune system. We further demonstrate that CAD1 localizes to both the cytosol and plasma membrane using confocal microscopy and subcellular fractionation. Our results offer new insights into immune homeostasis and provide tools to further decipher the intriguing role of MACPF proteins in plants.  相似文献   
40.
Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号