首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   24篇
  428篇
  2020年   5篇
  2019年   4篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   19篇
  2013年   8篇
  2012年   15篇
  2011年   21篇
  2010年   13篇
  2009年   15篇
  2008年   13篇
  2007年   16篇
  2006年   18篇
  2005年   15篇
  2004年   18篇
  2003年   21篇
  2002年   22篇
  2001年   18篇
  2000年   13篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1994年   3篇
  1993年   2篇
  1991年   6篇
  1990年   6篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1980年   5篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1970年   4篇
  1969年   5篇
  1968年   2篇
  1967年   2篇
  1965年   3篇
排序方式: 共有428条查询结果,搜索用时 0 毫秒
51.
52.
Centriole elimination is an essential process that occurs in female meiosis of metazoa to reset centriole number in the zygote at fertilization. How centrioles are eliminated remains poorly understood. Here we visualize the entire elimination process live in starfish oocytes. Using specific fluorescent markers, we demonstrate that the two older, mother centrioles are selectively removed from the oocyte by extrusion into polar bodies. We show that this requires specific positioning of the second meiotic spindle, achieved by dynein-driven transport, and anchorage of the mother centriole to the plasma membrane via mother-specific appendages. In contrast, the single daughter centriole remaining in the egg is eliminated before the first embryonic cleavage. We demonstrate that these distinct elimination mechanisms are necessary because if mother centrioles are artificially retained, they cannot be inactivated, resulting in multipolar zygotic spindles. Thus, our findings reveal a dual mechanism to eliminate centrioles: mothers are physically removed, whereas daughters are eliminated in the cytoplasm, preparing the egg for fertilization.  相似文献   
53.
54.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   
55.
AimsDipeptidyl peptidase IV (DP IV)-related proteases and aminopeptidase N (APN) are drug targets in various diseases. Here we investigated for the first time the effects of DP-IV-related protease inhibitors and APN inhibitors on chronic inflammatory lung diseases.Main methodsA murine model of silica (SiO2)-induced lung fibrosis and in vitro cultures of human lung epithelial cells and monocytes have been used and the influence of silica-treatment and inhibitors on inflammation and fibrosis has been measured.Key findingsWe found increased inflammation and secretion of the chemokines IL-6, MCP-1 and MIP-α 2 weeks after SiO2 application, and increased lung fibrosis after 3 months. Treatment with the APN inhibitor actinonin reduced chemokine secretion in the lung and bronchoalveolar lavage fluid, and in cell culture, and decreased the level of fibrosis after 3 months. Treatment with inhibitors of DP-IV-related proteases, or a combination of DP IV inhibitors and APN inhibitors, had no significant effect. We found no obvious side effects of long-term treatment with inhibitors of APN and DP IV.SignificanceOverall, our findings show that actinonin, an inhibitor of aminopeptidase N, might modulate chemokine secretion in the lung and thus attenuate the development of lung fibrosis. Additional targeting of DP-IV-related proteases had no significant effect on these processes.  相似文献   
56.
Picoeukaryotes dominate the phytoplankton of Lake Balaton—the largest shallow lake in Central Europe—in the winter period. We examined the annual dynamics of picoplankton abundance and composition in the lake in order to establish if the picoeukaryotes merely survive the harsher winter conditions or they are able to grow in the ice-covered lake when the entire phytoplankton is limited by low light and temperature. Lake Balaton has an annual temperature range of 1–29°C, and it is usually frozen between December and February for 30–60 days. In the spring-autumn period phycocyanin and phycoerythrin rich Cyanobacteria are the dominant picoplankters, and picoeukaryotes are negligible. Our five-year study shows the presence of three types of picophytoplankton assemblages in Lake Balaton: (1) Phycoerythrin-rich Cyanobacteria—the dominant summer picoplankters in the mesotrophic lake area; (2) Phycocyanin-rich Cyanobacteria—the most abundant summer picoplankters in the eutrophic lake area and; (3) Picoeukaryotes—the dominant winter picoplankters in the whole lake. The observed winter abundance of picoeukaryotes was high (up to 3 × 105 cells ml−1), their highest biomass (520 μg l−1) exceeded the maximum summer biomass of picocyanobacteria (500 μg l−1). Our results indicate that the winter predominance of picoeukaryotes is a regular phenomenon in Lake Balaton, irrespective of the absence or presence of the ice cover. Picoeukaryotes are able to grow at as low as 1–2°C water temperature, while the total phytoplankton biomass show the lowest annual values in the winter period. In agreement with earlier findings, the contribution of picocyanobacteria to the total phytoplankton biomass in Lake Balaton is inversely related to the total phytoplankton biomass, whereas no such relationship was observable in the case of picoeukaryotes.  相似文献   
57.

Background

Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea.

Methodology

The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005.

Principal Findings

Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities.

Conclusions/Significance

To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity.  相似文献   
58.
Optimization of host cell lines both for transient and stable protein production is typically hampered by the inherent heterogeneity of cells within a population. This heterogeneity is caused not only by “hard fact” gene mutations, but also by subtle differences in the cellular network of regulation, which may include epigenetic variations. Taking advantage of this heterogeneity, we sorted for naturally occurring variants of CHO‐K1 and CHO‐S host cells that possess an improved cellular machinery for transient antibody production. The long‐term goal of this study was both to identify host cells that yield recombinant cell lines with on average higher productivity, but also to study the molecular differences that characterize such cells, independent of the site of gene integration or gene amplification. To identify such cells we optimized the procedure for transient transfection by electroporation to a degree that gave uniform transfer of plasmid DNA into nearly 100% of the cells and resulted in reproducible average productivities, with a standard deviation of 16% between independent experiments. Using this optimized protocol, the 1% of cells with the highest specific productivity was sorted and subcloned with a cold capture secretion assay. Upon re‐transfection, the resulting subclones showed the same specific productivity as their respective parental cell line. To enrich for cells with potentially stable improved properties, the 1% highest producers were sorted three times, 2 days after transient transfection each, and the enriched population was again sorted into microtiter plates for subcloning. For each of the two parental cell lines tested, three subclones were obtained that had a threefold higher specific productivity after transient transfection. This property was stable for approximately 3 months, indicating that the changes in productivity were regulatory and not mutational. Biotechnol. Bioeng. 2011;108: 386–394. © 2010 Wiley Periodicals, Inc.  相似文献   
59.
60.
A better, more effective dialogue is needed between biodiversity science and policy to underpin the sustainable use and conservation of biodiversity. Many initiatives exist to improve communication, but these largely conform to a ‘linear’ or technocratic model of communication in which scientific “facts” are transmitted directly to policy advisers to “solve problems”. While this model can help start a dialogue, it is, on its own, insufficient, as decision taking is complex, iterative and often selective in the information used. Here, we draw on the literature, interviews and a workshop with individuals working at the interface between biodiversity science and government policy development to present practical recommendations aimed at individuals, teams, organisations and funders. Building on these recommendations, we stress the need to: (a) frame research and policy jointly; (b) promote inter- and trans-disciplinary research and “multi-domain” working groups that include both scientists and policy makers from various fields and sectors; (c) put in place structures and incentive schemes that support interactive dialogue in the long-term. These are changes that are needed in light of continuing loss of biodiversity and its consequences for societal dependence on and benefits from nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号