首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   24篇
  2020年   5篇
  2019年   4篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   19篇
  2013年   8篇
  2012年   15篇
  2011年   21篇
  2010年   13篇
  2009年   15篇
  2008年   13篇
  2007年   16篇
  2006年   18篇
  2005年   15篇
  2004年   18篇
  2003年   21篇
  2002年   22篇
  2001年   18篇
  2000年   13篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1994年   3篇
  1993年   2篇
  1991年   6篇
  1990年   6篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1980年   5篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1970年   4篇
  1969年   5篇
  1968年   2篇
  1967年   2篇
  1965年   3篇
排序方式: 共有428条查询结果,搜索用时 31 毫秒
121.
122.
123.
GABA(A) receptors are chloride channels composed of five subunits. Cerebellar granule cells express abundantly six subunits belonging to four subunit classes. These are assembled into a number of distinct receptors, but the regulation of their relative proportions is yet unknown. Here, we studied the composition of cerebellar GABA(A) receptors after targeted disruption of the delta subunit gene. In membranes and extracts of delta-/- cerebellum, [(3)H]muscimol binding was not significantly changed, whereas [(3)H]Ro15-4513 binding was increased by 52% due to an increase in diazepam-insensitive binding. Immunocytochemical and Western blot analysis revealed no change in alpha(6) subunits but an increased expression of gamma(2) subunits in delta-/- cerebellum. Immunoaffinity chromatography of cerebellar extracts indicated there was an increased coassembly of alpha(6) and gamma(2) subunits and that 24% of all receptors in delta-/- cerebellum did not contain a gamma subunit. Because 97% of delta subunits are coassembled with alpha(6) subunits in the cerebellum of wild-type mice, these results indicated that, in delta-/- mice, alpha(6)betagamma(2) and alphabeta receptors replaced delta subunit-containing receptors. The availability of the delta subunit, thus, influences the level of expression or the extent of assembly of the gamma(2) subunit, although these two subunits do not occur in the same receptor.  相似文献   
124.
125.
Initial F420-dependent hydrogenation of 2,4,6-trinitrophenol(picric acid) generated the hydride -complex of picrate and finally the dihydride complex.With 2,4-dinitrophenol the hydride -complex of 2,4-dinitrophenolis generated. The hydride transferring enzyme system showed activity against several substituted2,4-dinitrophenols but not with mononitrophenols. A Km-value of0.06 mM of the hydride transfer for picrate as substrate was found. The pH optimaof the NADPH-dependent F420 reductase and for the hydride transferase were 5.5and 7.5, respectively. An enzymatic activity has been identified catalyzing the releaseof stoichometric amounts of 1 mol nitrite from 1 mol of the dihydride -complexof picrate. This complex was synthesized by chemical reduction of picrate and characterizedby 1H and 13C NMR spectroscopy. The hydride -complex of 2,4-dinitrophenolhas been identified as the denitration product. The nitrite-eliminating activitywas enriched and clearly separated from the hydride transferring enzyme system byFPLC. 2,4-Dinitrophenol has been disproven as a metabolite of picrate (Ebert et al. 1999)and a convergent catabolic pathway for picrate and 2,4-dinitrophenol with thehydride -complex of 2,4-dinitrophenol as the common intermediate has been demonstrated.  相似文献   
126.
127.
128.
129.

Background

Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs).

Objective

We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naïve mice.

Methods

Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers.

Results

Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.8±1.8×104 cells/ml vs. 33±11×104 in control mice) and spleen (dexamethasone: 2.8±1.9×105/spleen vs. 95±22×105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.0±1.5% vs 3.4±1.5%*; AITR+: 0.6±0.4 vs 0.5±0.3%, CD127low: 4.0±1.3 vs 5.0±3.0%* and CTLA4+: 13.8±11.5 vs 15.6±12.5%; * p<0.05).

Conclusion

Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers.  相似文献   
130.
The toll-like receptors (TLRs) 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. Certain GU- or AU-rich RNA sequences were described to differentiate between human TLR7- and TLR8-mediated immune effects. Those single-stranded RNA molecules require endosomal delivery for stabilization against ribonucleases. We have discovered RNA sequences that preferentially activate TLR7, form higher ordered structures, and do not require specific cellular delivery. In addition, a dual activation of TLR8 and TLR9 without affecting TLR7 can be achieved by chimeric molecules consisting of GU-rich RNA and Cytosin (C) phosphordiester or phosphorthioat (p) guanine (CpG) motif DNA sequences. Such chimeras stimulate TLR9-mediated type I interferon (IFN) and TLR8-depending proinflammatory cytokine and chemokine production upon primary human cell activation. However, an RNA-dependent TLR7 IFN-α cytokine release is suppressed by the phosphorothioate DNA sequence contained in the chimeric molecule. To convert the immune response of a single-stranded RNA from TLR7/8 to TLR9, a simple chemical modification at the 5' end proves to be sufficient. Such 8-oxo-2'-deoxy-guanosine or 8-bromo-2'-deoxy-guanosine modifications of the first guanosine in GU-rich single-stranded RNAs convert the immune response to include TLR9 activation and demonstrate strong additive effects for type I IFN immune responses in human primary cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号