首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   26篇
  2023年   7篇
  2022年   14篇
  2021年   23篇
  2020年   16篇
  2019年   5篇
  2018年   16篇
  2017年   13篇
  2016年   19篇
  2015年   22篇
  2014年   37篇
  2013年   49篇
  2012年   50篇
  2011年   54篇
  2010年   31篇
  2009年   25篇
  2008年   26篇
  2007年   17篇
  2006年   32篇
  2005年   32篇
  2004年   22篇
  2003年   25篇
  2002年   15篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1981年   6篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
排序方式: 共有625条查询结果,搜索用时 625 毫秒
21.
Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression.Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system, and although the etiology of the disease is not fully understood, it is probably caused by the interaction of a complex genetic architecture and environmental factors. Multiple sclerosis affects over 2 million people worldwide, and it is typically diagnosed between ages 20 and 40, thus making a significant impact on public health and its economy (1).In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome. However, not all patients with this syndrome develop multiple sclerosis over time (2), and currently, the magnetic resonance imaging (MRI) abnormalities and the presence of IgG oligoclonal bands in cerebrospinal fluid (CSF) are used as predictors for later conversion to clinically definite multiple sclerosis (CDMS)1 (35). Although such abnormalities are considered important factors that influence the likelihood of developing CDMS, there is currently no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop CDMS.The lack of diagnostic and prognostic biomarkers is a common problem for many diseases lacking a complete etiology, which is the case for most neurological disorders related to the central nervous system such as Parkinson''s and Alzheimer''s diseases, schizophrenia, and multiple sclerosis. In the particular case of multiple sclerosis, early treatment of patients with a clinically isolated syndrome can prevent brain damage and slow down the disease progression (6). Therefore, the availability of a diagnostic test in the initial stages of the disease is not only desirable but also of extreme relevance to attenuate the degenerative effects of the disease.Biomarker validation has traditionally been dominated by enzyme linked immuno-sorbent assays (ELISA), but recent advances in proteomics techniques have enabled the measurement of a subset of selected proteins over a large dynamic concentration range in multiple samples. Targeted mass spectrometry has thus become the method of choice when quantifying simultaneously a panel of proteins across many different biological samples (79). In particular, selected reaction monitoring (SRM) is the gold standard targeted mass spectrometry method for protein quantification due to its high precision, reliability, and throughput (1013). This targeted mass spectrometry method is performed on triple quadrupole instruments, in which a predefined peptide precursor ion is first isolated, and then selected fragment ions arising from its collisional dissociation are measured over time. Each pair of precursor and fragment ion is called a transition, and multiple transitions can be coordinately measured and used to conclusively identify and quantify a peptide in a clinical complex sample.In a previous study, we used a screening mass spectrometric approach to discover potential markers for multiple sclerosis conversion in patients that initially presented a clinical isolated syndrome (14). In that discovery phase, quantitative mass spectrometry with iTRAQ labeling was used to measure protein abundances in pooled CSF samples from patients presenting a clinical isolated syndrome that either remained normal (CIS) or had eventually converted to clinically definite multiple sclerosis (CDMS) (n = 60). In the initial screening, several proteins exhibited significant differences in abundance when comparing these two groups of patients. The abundance change in one of the altered proteins, chitinase 3-like 1 (CH3L1), was confirmed by ELISA in CSF of individual patients, whereas for others, such as semaphorin 7A (SEM7A) and ala-β-his-dipeptidase (CNDP1), their abundance changes were confirmed by targeted mass spectrometry in follow-up studies with independent cohorts (15). Moreover, the levels of CH3L1 were associated with brain MRI abnormalities and disability progression during the follow-up period, as well as with shorter time to conversion to clinically definite multiple sclerosis (14).We now set out to establish a diagnostic protein classifier with high sensitivity and specificity able to differentiate between patients with a clinically isolated syndrome that have either a high or a low risk of developing clinically definite multiple sclerosis over time. For this purpose, CSF samples from an independent patient cohort from the one used in the discovery study were collected, and a set of preselected protein biomarker candidates were systematically quantified by targeted mass spectrometry (SRM) and evaluated for their classification power. Out of this study, we established a protein classifier based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase, which is able to differentiate with high sensitivity and specificity between patients with a clinically isolated syndrome that have either a high or low risk of developing clinically definite multiple sclerosis. Moreover, the statistical model built around this protein classifier enables clinicians to easily assign to each patient a precise probability of conversion to clinically definite multiple sclerosis (Fig. 1).Open in a separate windowFig. 1.General workflow used in the present study. Initially, protein candidates identified in our previous discovery studies—together with several proteins described by other groups—were selected and quantified by targeted mass spectrometry (SRM) in a relatively large cohort individual patients. Protein quantities were then evaluated by their capability of classifying patients with clinical isolated syndrome, and thus, the best prognostic protein combination was identified.  相似文献   
22.
N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles ( 4a–4h ) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.  相似文献   
23.
We report a new mechanism of androgen receptor (AR) mRNA regulation and cytoprotection in response to AR pathway inhibition (ARPI) stress in prostate cancer (PCA). AR mRNA translation is coordinately regulated by RNA binding proteins, YTHDF3 and G3BP1. Under ambient conditions m6A-modified AR mRNA is bound by YTHDF3 and translationally stimulated, while m6A-unmodified AR mRNA is bound by G3BP1 and translationally repressed. When AR-regulated PCA cell lines are subjected to ARPI stress, m6A-modified AR mRNA is recruited from actively translating polysomes (PSs) to RNA-protein stress granules (SGs), leading to reduced AR mRNA translation. After ARPI stress, m6A-modified AR mRNA liquid–liquid phase separated with YTHDF3, while m6A-unmodified AR mRNA phase separated with G3BP1. Accordingly, these AR mRNA messages form two distinct YTHDF3-enriched or G3BP1-enriched clusters in SGs. ARPI-induced SG formation is cell-protective, which when blocked by YTHDF3 or G3BP1 silencing increases PCA cell death in response to ARPI stress. Interestingly, AR mRNA silencing also delays ARPI stress-induced SG formation, highlighting its supportive role in triggering this stress response. Our results define a new mechanism for stress adaptive cell survival after ARPI stress involving SG-regulated translation of AR mRNA, mediated by m6A RNA modification and their respective regulatory proteins.  相似文献   
24.
The Kcnq1 imprinting control region (ICR) located in intron 10 of the Kcnq1 gene is unmethylated on the paternal chromosome and methylated on the maternal chromosome and has been implicated in the manifestation of parent-of-origin-specific expression of six neighboring genes. The unmethylated Kcnq1 ICR harbors bidirectional silencer activity and drives expression of an antisense RNA, Kcnq1ot1, which overlaps the Kcnq1 coding region. To elucidate whether the Kcnq1ot1 RNA plays a role in the bidirectional silencing activity of the Kcnq1 ICR, we have characterized factor binding sites by genomic footprinting and tested the functional consequence of various deletions of these binding sites in an episome-based system. Deletion of the elements necessary for Kcnq1ot1 promoter function resulted in the loss of silencing activity. Furthermore, interruption of Kcnq1ot1 RNA production by the insertion of a polyadenylation sequence downstream of the promoter also caused a loss of both silencing activity and methylation spreading. Thus, the antisense RNA plays a key role in the silencing function of the ICR. Double-stranded RNA (dsRNA)-mediated RNA interference is unlikely to be involved, as the ICR is active irrespective of the simultaneous production of dsRNA from the genes it silences.  相似文献   
25.
26.
Fresh aerial parts of Angelica glauca, growing wild in Kashmir valley in higher Himalaya (Jammu and Kashmir, India), collected at flowering stage from different locations, on hydro-distillation provided a refreshing light pale coloured essential oil with characteristic floral woody flavour. The oil was found to be a complex mixture of mono- and sesquiterpenes and 34 compounds accounting for nearly 97.4% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as alpha-phellandrene (13.5%), trans-carveol (12.0%), beta-pinene (11.7%), thujene (7.5%), beta-caryophyllene oxide (7.2%), beta-caryophyllene (7.0%), gamma-terpinene (6.7%), nerolidol (6.5%), beta-bisabolene (5.2%) and germacrene D (4.5%). It is the first report to exploit the essential oil from Himalayan A. glauca herb collected at flowering stage.  相似文献   
27.
The human genome is revisited using exon and intron distribution profiles. The 26,564 annotated genes in the human genome (build October, 2003) contain 233,785 exons and 207,344 introns. On average, there are 8.8 exons and 7.8 introns per gene. About 80% of the exons on each chromosome are < 200 bp in length. < 0.01% of the introns are < 20 bp in length and < 10% of introns are more than 11,000 bp in length. These results suggest constraints on the splicing machinery to splice out very long or very short introns and provide insight to optimal intron length selection. Interestingly, the total length in introns and intergenic DNA on each chromosome is significantly correlated to the determined chromosome size with a coefficient of correlation r = 0.95 and r = 0.97, respectively. These results suggest their implication in genome design.  相似文献   
28.
Complete genome sequences of several pathogenic bacteria have been determined, and many more such projects are currently under way. While these data potentially contain all the determinants of host-pathogen interactions and possible drug targets, computational tools for selecting suitable candidates for further experimental analyses are currently limited. Detection of bacterial genes that are non-homologous to human genes, and are essential for the survival of the pathogen represents a promising means of identifying novel drug targets. We have used three-way genome comparisons to identify essential genes from Pseudomonas aeruginosa. Our approach identified 306 essential genes that may be considered as potential drug targets. The resultant analyses are in good agreement with the results of systematic gene deletion experiments. This approach enables rapid potential drug target identification, thereby greatly facilitating the search for new antibiotics. These results underscore the utility of large genomic databases for in silico systematic drug target identification in the post-genomic era.  相似文献   
29.
Average height of the free population in the United States born in the mid-1830s began to decline despite growing per capita incomes. Explanations for this "antebellum puzzle" revolve around a possibly deteriorating disease environment promoted by urban agglomeration and increases in the relative price of protein-rich foods. However, several groups were immune to the effect, including members of the middle class, whose income was high enough, and increased enough to overcome the adverse developments and maintain their nutritional status. Although at the opposite end of the social spectrum, the height of male slaves also increased, as it was in their owners' interest to raise their slaves' food allotments. The height of Tennessee convicts, analyzed in this article, also increased in the late-1830s, being the third exception to the "antebellum puzzle." Mid-19th century Tennessee was integrated into interstate commerce in cotton and tobacco and experienced considerable movement of people who would have brought with them diseases from elsewhere, hence, it would have been integrated into the US disease pool, and the fact that heights did not decline in the 1830s is therefore an indication that the antebellum puzzle cannot be explained exclusively by the spread of diseases. Yet, Tennessee's economy was quite different to that of the rest of the country. Although it did export live swine to the South, these exports did not increase during the antebellum decades. Hence, Tennessee remained self-sufficient in pork, and consumption of pork did not decline. Thus, the evidence presented here is consistent with the economic interpretation of the "antebellum puzzle": self-sufficiency in protein production protected even the members of the lower-classes of Tennessee from the negative externalities associated with the onset of industrialization.  相似文献   
30.
DNA mismatch repair (MMR) is the process by which incorrectly paired DNA nucleotides are recognized and repaired. A germline mutation in one of the genes involved in the process may be responsible for a dominantly inherited cancer syndrome, hereditary nonpolyposis colon cancer. Cancer progression in predisposed individuals results from the somatic inactivation of the normal copy of the MMR gene, leading to a mutator phenotype affecting preferentially repeat sequences (microsatellite instability, MSI). Recently, we identified children with a constitutional deficiency of MMR activity attributable to a mutation in the h MLH1 gene. These children exhibited a constitutional genetic instability associated with clinical features of de novo neurofibromatosis type 1 (NF1) and early onset of extracolonic cancer. Based on these observations, we hypothesized that somatic NF1 gene mutation was a frequent and possibly early event in MMR-deficient cells. To test this hypothesis, we screened for NF1 mutations in cancer cells. Genetic alterations were identified in five out of ten tumor cell lines with MSI, whereas five MMR-proficient tumor cell lines expressed a wild-type NF1 gene. Somatic NF1 mutations were also detected in two primary tumors exhibiting an MSI phenotype. Finally, a 35-bp deletion in the murine Nf1 coding region was identified in mlh1-/- mouse embryonic fibroblasts. These observations demonstrate that the NF1 gene is a mutational target of MMR deficiency and suggest that its inactivation is an important step of the malignant progression of MMR-deficient cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号