首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   46篇
  2022年   3篇
  2021年   2篇
  2018年   4篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   11篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1997年   3篇
  1996年   5篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1983年   9篇
  1982年   4篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1975年   6篇
  1974年   2篇
  1973年   5篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
  1957年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
41.
Using an adaptive strategy, Chinese hamster ovary (CHO) cell lines were developed that are capable of robust growth in serum-free suspension culture. These preadapted derivatives of the commonly used strain of CHO cells (CHO DUKX), termed PA-DUKX, were used for the introduction and stable expression of several heterologous human genes. A significant advantage of recombinant PA-DUKX cells was their ability to readily resume growth in serum-free suspension culture after transfection and amplification of heterologous genes. Expression of recombinant human proteins in PA-DUKX cells was quantitatively similar to that of lineages generated using conventional CHO DUKX cells. In addition, recombinant human proteins expressed by transfected PA-DUKX lineages were shown to be biochemically and structurally similar to those expressed in CHO DUKX cells, PA-DUKX host cell technology provides an opportunity for reducing the time and resources required to develop large-scale, suspension culture-based manufacturing processes employing serum-free medium. (c) 1996 John Wiley & Sons, Inc.  相似文献   
42.
Many bees collect pollen by grasping the anthers of a flower and vibrating their flight muscles at high frequencies—a behavior termed sonication, or buzz-pollination. Here we compare buzz-pollination on Solanum lycopersicum (cherry tomatoes) by two bees that fill similar niches on different continents—in Australia, Amegilla murrayensis (blue-banded bee), and in North America, Bombus impatiens (bumblebee). We collected audio recordings of buzz-pollination and quantified the frequency and length of buzzes, as well as the total time spent per flower. We found that A. murrayensis buzzes at significantly higher frequencies (~350 Hz) than B. impatiens (~240 Hz) and flaps its wings at higher frequencies during flight. There was no difference in the length of a single buzz, but A. murrayensis spent less time on each flower, as B. impatiens buzzed the flower several times before departing, whereas A. murrayensis typically buzzed the flower only once. High-speed videos of A. murrayensis during buzz-pollination revealed that its physical interaction with the flower differs markedly from the mechanism described for Bombus and other bees previously examined. Rather than grasping the anther cone with its mandibles and shaking, A. murrayensis taps the anther cone with its head at the high buzzing frequencies generated by its flight muscles. This unique behavior, combined with its higher buzzing frequency and reduced flower visit duration, suggests that A. murrayensis may be able to extract pollen more quickly than B. impatiens, and points to the need for further studies directly comparing the pollination effectiveness of these species.  相似文献   
43.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   
44.
The formation of phosphoribosylpyrophosphate (PRPP) and adenosine 5′-monophosphate (AMP) from ribose 5-phosphate and adenosine 5′-triphosphate, catalyzed by purified PRPP synthetase from Salmonella typhimurium, was conducted in 18O-enriched water. The products were isolated, and inorganic phosphate was isolated from AMP and the pyrophosphoryl moiety of PRPP. Oxygen-18 was incorporated into PRPP but not into AMP. These results indicate that PRPP synthesis proceeds with scission of a βPO bond of adenosine 5′-triphosphate. Oxygen-18 enters PRPP by prior exchange of H218O into ribose 5-phosphate; the rate of this exchange was measured by combined gas chromatography-mass spectrometry of the trimethylsilyl derivative of ribose 5-phosphate.  相似文献   
45.
46.
Acetate Synthesis from H(2) plus CO(2) by Termite Gut Microbes   总被引:1,自引:0,他引:1  
Gut microbiota from Reticulitermes flavipes termites catalyzed an H(2)-dependent total synthesis of acetate from CO(2). Rates of H(2)-CO(2) acetogenesis in vitro were 1.11 +/- 0.37 mumol of acetate g (fresh weight) h (equivalent to 4.44 +/- 1.47 nmol termite h) and could account for approximately 1/3 of all the acetate produced during the hindgut fermentation. Formate was also produced from H(2) + CO(2), as were small amounts of propionate, butyrate, and lactate-succinate. However, H(2)-CO(2) formicogenesis seemed largely unrelated to acetogenesis and was believed not to be a significant reaction in situ. Little or no CH(4) was formed from H(2) + CO(2) or from acetate. H(2)-CO(2) acetogenesis was inhibited by O(2), KCN, CHCl(3), and iodopropane and could be abolished by prefeeding R. flavipes with antibacterial drugs. By contrast, prefeeding R. flavipes with starch resulted in almost complete defaunation but had little effect on H(2)-CO(2) acetogenesis, suggesting that bacteria were the acetogenic agents in the gut. H(2)-CO(2) acetogenesis was also observed with gut microbiota from Prorhinotermes simplex, Zootermopsis angusticollis, Nasutitermes costalis, and N. nigriceps; from the wood-eating cockroach Cryptocercus punctulatus; and from the American cockroach Periplaneta americana. Pure cultures of H(2)-CO(2)-acetogenic bacteria were isolated from N. nigriceps, and a preliminary account of their morphological and physiological properties is presented. Results indicate that in termites, CO(2) reduction to acetate, rather than to CH(4), represents the main electron sink reaction of the hindgut fermentation and can provide the insects with a significant fraction (ca. 1/3) of their principal oxidizable energy source, acetate.  相似文献   
47.
D A Bernlohr  R L Switzer 《Biochemistry》1981,20(20):5675-5681
The inactivation of glutamine phosphoribosylpyrophosphate amidotransferase by reaction of its iron-sulfur center with O2 is believed to be a physiologically important mode of regulation of this enzyme in Bacillus subtilis cells in the stationary phase of growth. Chemical and physical changes accompanying oxidation of the purified enzyme by O2 were studied. The iron of the 4Fe-4S center was oxidized to enzyme-bound high-spin Fe3+; the S2- was oxidized to a mixture of S0 bound as thiocystine and unidentified products. The oxidant appeared to be O2, rather than peroxide, superoxide, hydroxyl radical, or singlet oxygen. Gross physical changes in the oxidized enzyme were shown by its aggregation, decreased solubility, and altered circular dichroic spectrum. Experimental variables affecting the rate of oxidative inactivation were described; the most important of these was modulation of rates of inactivation by the allosteric inhibitors AMP, ADP, GMP, GDP and by the substrate P-Rib-PP. AMP was a potent stabilizer, whose effect was antagonized by P-Rib-PP. The other nucleotides, either acting singly or acting as synergistic pairs, were destabilizers and able to antagonize stabilization by AMP. The results are discussed in terms of the regulation of the stability of amidotransferase and its degradation in vivo.  相似文献   
48.
DDE and reproductive success in some Alberta common terns   总被引:1,自引:0,他引:1  
  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号