首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  130篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   12篇
  2013年   7篇
  2012年   6篇
  2011年   12篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
21.
The Kosi coastal lake system, a chain of four interconnected basins, is located in the subtropical north-eastern corner of South Africa. Little information is available on zooplankton of the system and the main aim of this study is to report on zooplankton samples collected during 2002 and 2003. The set of samples consists of seasonal, subsurface mesozooplankton samples that were collected during nighttime in each of the lakes. A well-developed salinity gradient was evident along the interconnected lakes in the subsurface water during all seasons, ranging from freshwater in the upper lake Amanzamnyama to a maximum of 22 recorded in Lake Makhawulani. The zooplankton community structures of the lakes reflected the salinity gradient of the system, with some coastal marine taxa recorded in the lakes closer to the mouth and only freshwater taxa recorded in Lake Amanzamnyama. Mesozooplankton diversity and abundance were relatively low compared to other estuarine systems along the eastern coast of South Africa. The dominant taxa were calanoid copepods Acartiella natalensis and Pseudodiaptomus stuhlmanni and the mysid Mesopodopsis africana in the lower lakes, whereas cyclopoids Mesocyclops sp. and Thermocyclops sp. dominated the freshwater lake Amanzamnyama.  相似文献   
22.
Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
23.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   
24.

In 59 samples of periphyton and phytoplankton collected in 2002 - 2003 from the Nahal Qishon (Qishon River), northern Israel, we found 178 species from seven divisions of algae and cyanoprocaryotes. Diatoms, clorophytes, and cyanoprocaryotes prevail. Nitzschia and Navicula (Bacillariophyta) are the most abundant. Most of the species are cosmopolitan or widespread, except Lagynion janei (Chrysophyta), which is endemic for the Mediterranean Realm. About 17% of species (26) are new for Israel and five of them represent the first recorded genera: Crinalium endophyticum Crow, Actinocyclus normanii (Gregory) Hustedt, Rhizoclonium hieroglyphicum (Agardh) Kütz (Chlorophyta), Lagynion janei Bourelly, and Stylococcus aureus Chodat. Most of them come from a rare riverine assemblage with red alga Audouinella pygmea, as well as from the estuarine assemblage. Alkaliphiles predominate among the indicators of acidity, with few acidophiles confined to the communities under the impact of industrial wastes. Among the indicators of salinity, most numerous are the oligohalobien-indifferents and species adapted to a moderate salinity level. The relative species richness of ecological groups and the indices of saprobity are correlated with changes in conductivity, pH, and N-nitrate concentration. Indicators of organic pollution fall in the range of betameso- to alfamesosaprobic self-purification grades. Our studies show ecological significance of the Nahal Qishon as a model for a strongly disturbed aquatic ecosystem in the coastal zone of eastern Mediterranean.  相似文献   
25.
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   
26.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   
27.

Background

Recent studies show that besides freezing of gait (FOG), many people with Parkinson’s disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing.

Objective

To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait.

Methods

Thirty-four patients with PD, including 17 with and 17 without FOG, performed a writing task on a touch-sensitive writing tablet requiring writing at constant small and large size as well as writing at gradually increasing and decreasing size. Patients of both groups were matched for disease severity, tested while ‘on’ medication and compared to healthy age-matched controls.

Results

Fifty upper limb freezing episodes were detected in 10 patients, including 8 with and 2 without FOG. The majority of the episodes occurred when participants had to write at small or gradually decreasing size. The occurrence of FOUL and the number of FOUL episodes per patient significantly correlated with the occurrence and severity of FOG. Patients with FOUL also showed a significantly smaller amplitude in the writing parts outside the freezing episodes.

Conclusions

Corroborating findings of gait research, the current study supports a core problem in amplitude control underlying FOUL, both in maintaining as well as in flexibly adapting the cycle size.  相似文献   
28.
29.
To understand the process of cardiac aging, it is of crucial importance to gain insight into the age‐related changes in gene expression in the senescent failing heart. Age‐related cardiac remodeling is known to be accompanied by changes in extracellular matrix (ECM) gene and protein levels. Small noncoding microRNAs regulate gene expression in cardiac development and disease and have been implicated in the aging process and in the regulation of ECM proteins. However, their role in age‐related cardiac remodeling and heart failure is unknown. In this study, we investigated the aging‐associated microRNA cluster 17–92, which targets the ECM proteins connective tissue growth factor (CTGF) and thrombospondin‐1 (TSP‐1). We employed aged mice with a failure‐resistant (C57Bl6) and failure‐prone (C57Bl6 × 129Sv) genetic background and extrapolated our findings to human age‐associated heart failure. In aging‐associated heart failure, we linked an aging‐induced increase in the ECM proteins CTGF and TSP‐1 to a decreased expression of their targeting microRNAs 18a, 19a, and 19b, all members of the miR‐17–92 cluster. Failure‐resistant mice showed an opposite expression pattern for both the ECM proteins and the microRNAs. We showed that these expression changes are specific for cardiomyocytes and are absent in cardiac fibroblasts. In cardiomyocytes, modulation of miR‐18/19 changes the levels of ECM proteins CTGF and TSP‐1 and collagens type 1 and 3. Together, our data support a role for cardiomyocyte‐derived miR‐18/19 during cardiac aging, in the fine‐tuning of cardiac ECM protein levels. During aging, decreased miR‐18/19 and increased CTGF and TSP‐1 levels identify the failure‐prone heart.  相似文献   
30.
Using two independent prostate cancer cell lines (LNCaP and MDA-PCa-2a), we demonstrate that coordinated stimulation of lipogenic gene expression by androgens is a common phenomenon in androgen-responsive prostate tumor lines and involves activation of the sterol regulatory element-binding protein (SREBP) pathway. We show 1) that in both cell lines, androgens stimulate the expression of fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase, two key lipogenic genes representative for the fatty acid and the cholesterol synthesis pathway, respectively; 2) that treatment with androgens results in increased nuclear levels of active SREBP; 3) that the effects of androgens on promoter-reporter constructs derived from both lipogenic genes (fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase) depend on the presence of intact SREBP-binding sites; and 4) that cotransfection with dominant-negative forms of SREBPs abolishes the effects of androgens. Related to the mechanism underlying androgen activation of the SREBP pathway, we show that in addition to minor effects on SREBP precursor levels, androgens induce a major increase in the expression of sterol regulatory element-binding protein cleavage-activating protein (SCAP), an escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of proteolytical activation in the Golgi. Both time course studies and overexpression experiments showing that increasing levels of SCAP enhance the production of mature SREBP and stimulate lipogenic gene expression support the contention that SCAP plays a pivotal role in the lipogenic effects of androgens in tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号