首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   4篇
  国内免费   2篇
  2021年   6篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   10篇
  2014年   5篇
  2013年   5篇
  2012年   6篇
  2011年   12篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1984年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
91.
The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.  相似文献   
92.
Previous studies comparing forward (FW) and backward (BW) walking suggested that the leg kinematics in BW were essentially those of FW in reverse. This led to the proposition that in adults the neural control of FW and BW originates from the same basic neural circuitry. One aspect that has not received much attention is to what extent development plays a role in the maturation of neural control of gait in different directions. BW has been examined either in adults or infants younger than one year. Therefore, we questioned which changes occur in the intermediate phases (i.e. in primary school-aged children). Furthermore, previous research focused on the lower limbs, thereby raising the question whether upper limb kinematics are also simply reversed from FW to BW. Therefore, in the current study the emphasis was put both on upper and lower limb movements, and the coordination between the limbs. Total body 3D gait analysis was performed in primary school-aged children (N = 24, aged five to twelve years) at a preferred walking speed to record angular displacements of upper arm, lower arm, upper leg, lower leg, and foot with respect to the vertical (i.e. elevation angle). Kinematics and interlimb coordination were compared between FW and BW. Additionally, elevation angle traces of BW were reversed in time (revBW) and correlated to FW traces. Results showed that upper and lower limb kinematics of FW correlated highly to revBW kinematics in children, which appears to be consistent with the proposal that control of FW and BW may be similar. In addition, age was found to mildly alter lower limb kinematic patterns. In contrast, interlimb coordination was similar across all children, but was different compared to adults, measured for comparison. It is concluded that development plays a role in the fine-tuning of neural control of FW and BW.  相似文献   
93.
苏云金芽胞杆菌幕虫亚种T02菌株的伴胞晶体在芽胞外壁内侧形成,呈现晶胞粘连的现象。在此菌株中克隆了cry26 Aa和cry28 Aa两个基因,并对晶胞粘连现象与质粒的相关性做了系统研究。通过消除幕虫亚种T02菌株的质粒,得到了仅消除cry26 Aa所在质粒的菌株BMB1151和无质粒的菌株BMB1152。通过穿梭载体将cry26 Aa和cry28 Aa两个基因分别和同时转化无质粒突变株BMB1152并表达,形成的晶体与芽胞独立存在不能粘连,表明在幕虫亚种染色体背景下仅仅cry的表达不能形成晶胞粘连现象,从而推断晶胞粘连现象可能与幕虫亚种两个基因所在的质粒有关;进一步的研究发现将cry26 Aa在仅消除cry26 Aa所在质粒的突变株BMB1151中表达,形成的晶体与芽胞也分别独立存在不能粘连,从而进一步推断幕虫亚种晶胞粘连现象与cry26 Aa所在质粒有关。  相似文献   
94.
95.
Behavioural and neurophysiological evidence convincingly establish that the left hemisphere is dominant for motor skills that are carried out with either hand or those that require bimanual coordination. As well as this prioritization, we argue that specialized functions of the right hemisphere are also indispensable for the realization of goal-directed behaviour. As such, lateralization of motor function is a dynamic and multifaceted process that emerges across different timescales and is contingent on task- and performer-related determinants.  相似文献   
96.
The protected Eurasian beaver Castor fiber is recolonizing its former range hereby entering human-dominated landscapes. This ecosystem engineer can cause considerable damage to human infrastructures and agriculture, by feeding, digging and damming. To prevent human–wildlife conflict and ensure continued support from the local residents, a better understanding of habitat selection is required. By using species distribution models (SDMs) to quantify habitat requirements in our study area in Flanders, Belgium, based on 1792 occurrence data from 71 territories, and a fine-scale land use and vegetation map, we explored the potential for future beaver settlements. The results indicate that even in a highly human-dominated landscape, there is sufficient habitat available to support beaver populations. We highlight the importance of distance to water, willow stands, wetland vegetation and poplar trees. We show that there is currently sufficient habitat to support 924 territories (619–1515, 90% confidence interval) in Flanders (but this does not imply these locations are conflict-free). Our findings indicate that 12 year after the reintroduction, there continues to be a large expansion potential, both in range and in densities within the currently recolonized area. Our results can be used as a management tool in order to evaluate possible risks linked with the return of beavers in a human dominated landscape. At these critical locations, increased monitoring or structural measures can prevent conflicts. By preventing or quickly resolving human wildlife conflicts, long-term coexistence between humans and beavers can be achieved.  相似文献   
97.
In crop carbon budget studies losses of root material during storage and washing of samples may cause considerable errors. To correct data from field experiments where rhizosphere C fluxes in wheat and barley were determined by14C pulse-labelling at different development stages, experiments were performed to quantify losses of14C from roots during washing. Losses of14C from wheat roots grown on nutrient solution and stored in different ways, decreased from on average 45% of total14C content 8 days after labelling to 27% after 21 days. This decrease was probably related to the incorporation of14C into structural compounds. During washing of oven-dried soil cores of held-grown wheat and barley 3 weeks after labelling, different size classes of losses of14C from the roots increased substantially with the development stage of the crop at labelling. The 0.3–0.6 mm size class increased from 5% of the14C in roots > 0.3 mm in young plants to 25% at ripening, and the < 0.3 mm size class increased from 8 to 41% of total14C content. The latter size class was, however, determined by washing handpicked roots and may therefore partly consist of adhering exudates, mucilages and microorganisms. The effect of development stage on root washing losses was attributed to root senescence which increases the fragility of roots. Thus, especially at the rate development stages root washing losses caused a severe underestimation of the root14C content. However, with these results the14C distribution patterns of the field experiments could be adequately corrected.Communication No. 77 of the Dutch Programme on Soil Ecology of Arable Farming Systems.  相似文献   
98.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号