首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   12篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1975年   1篇
  1969年   1篇
  1938年   1篇
  1912年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
61.
62.
G protein-coupled receptor signaling involves productive interaction between agonist-activated receptor and G protein. We have used Fourier-transform infrared difference spectroscopy to examine the interaction between the active Meta II state of the visual pigment rhodopsin with a peptide analogue corresponding to the C terminus of the alpha-subunit of the G protein transducin. Formation of the receptor-peptide complex evokes a spectral signature consisting of conformationally sensitive amide I and amide II difference bands. In order to distinguish between amide backbone contributions of the peptide and of the receptor moiety to the vibrational spectra, we employed complete (13)C,(15)N-labeling of the peptide. This isotopic labeling downshifts selectively the bands of the peptide, which can thus be extracted. Our results show that formation of the complex between the activated Meta II receptor state and the peptide is accompanied by structural changes of the peptide, and of the receptor, indicating that the conformation of the Meta II.peptide complex is different from that of Meta II. This result implies that the activated receptor state has conformational flexibility. Binding of the peptide to the activated receptor state stabilizes a substate that deviates from that stabilized only by the agonist.  相似文献   
63.

Background

The milk protein αS1-casein was recently reported to induce secretion of proinflammatory cytokines via Toll-like receptor 4 (TLR4). In this study, αS1-casein was identified as binder of theTLR4 ecto domain.

Methods

IL-8 secretion after stimulation of TLR4/MD2 (myeloid differentiation factor 2)/CD14 (cluster of differentiation 14)-transfected HEK293 cells (TLR4+) and Mono Mac 6 cells (MM6) with recombinant αS1-casein, or LPS as control was monitored. Binding of αS1-casein to TLR4 was quantified by microscale thermophoresis (MST).

Results

αS1-casein induced secretion of IL-8 in TLR4+ cells and in MM6 cells with a six-times higher final IL-8 concentration in supernatants. IL-8 secretion was inhibited by intracellular TLR4-domain antagonist TAK-242 with an IC50-value of 259.6?nM, by ecto-domain TLR4 antagonistic mianserin with 10–51?μM and by anti-CD14-IgA. The binding constants (KD) of αS1-casein to the TLR4, MD2, and CD14 were 2.8?μM, 0.3?μM and 2.7?μM, respectively. Finally, αS1-casein showed a higher affinity to TLR4/MD2 (KD: 2.2?μM) compared to LPS (KD: 8.2?μM).

Conclusion

Human αS1-casein induced proinflammatory effects are dependent upon binding to the TLR4 ectodomain and the presence of CD14. αS1-casein displayed stronger TLR4 agonistic activity than LPS via a different mode of action.

General significance

Breast milk protein αS1-casein is a proinflammatory cytokine.  相似文献   
64.
Although the local environment is known to regulate neural stem cell (NSC) maintenance in the central nervous system, little is known about the molecular identity of the signals involved. Chondroitin sulfate proteoglycans (CSPGs) are enriched in the growth environment of NSCs both during development and in the adult NSC niche. In order to gather insight into potential biological roles of CSPGs for NSCs, the enzyme chondroitinase ABC (ChABC) was used to selectively degrade the CSPG glycosaminoglycans. When NSCs from mouse E13 telencephalon were cultivated as neurospheres, treatment with ChABC resulted in diminished cell proliferation and impaired neuronal differentiation, with a converse increase in astrocytes. The intrauterine injection of ChABC into the telencephalic ventricle at midneurogenesis caused a reduction in cell proliferation in the ventricular zone and a diminution of self-renewing radial glia, as revealed by the neurosphere-formation assay, and a reduction in neurogenesis. These observations suggest that CSPGs regulate neural stem/progenitor cell proliferation and intervene in fate decisions between the neuronal and glial lineage.  相似文献   
65.
The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a KINETOCHORE NULL2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.  相似文献   
66.
In mammalian cells, glucosylceramide (GlcCer), the simplest glycosphingolipid, is hydrolyzed by the lysosomal enzyme acid beta-glucosidase (GlcCerase). In the human metabolic disorder Gaucher disease, GlcCerase activity is significantly decreased owing to one of approximately 200 mutations in the GlcCerase gene. The most common therapy for Gaucher disease is enzyme replacement therapy (ERT), in which patients are given intravenous injections of recombinant human GlcCerase; the Genzyme product Cerezyme has been used clinically for more than 15 years and is administered to approximately 4000 patients worldwide. Here we review the crystal structure of Cerezyme and other recombinant forms of GlcCerase, as well as of their complexes with covalent and non-covalent inhibitors. We also discuss the stability of Cerezyme, which can be altered by modification of its N-glycan chains with possible implications for improved ERT in Gaucher disease.  相似文献   
67.
Microbial rhodopsins are a family of seven-helical transmembrane proteins containing retinal as chromophore. Sensory rhodopsin II (SRII) triggers two very different responses upon light excitation, depending on the presence or the absence of its cognate transducer HtrII: Whereas light activation of the NpSRII/NpHtrII complex activates a signalling cascade that initiates the photophobic response, NpSRII alone acts as a proton pump.Using single-molecule force spectroscopy, we analysed the stability of NpSRII and its complex with the transducer in the dark and under illumination. By improving force spectroscopic data analysis, we were able to reveal the localisation of occurring forces within the protein chain with a resolution of about six amino acids. Distinct regions in helices G and F were affected differently, depending on the experimental conditions. The results are generally in line with previous data on the molecular stability of NpSRII. Interestingly, new interaction sites were identified upon light activation, whose functional importance is discussed in detail.  相似文献   
68.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3)-induced differentiation of HL-60 leukemia cells is accompanied by a number of cellular changes including regulation of oncogene expression and induction of terminal differentiation. We investigated the mechanism by which 1,25-(OH)2D3 induces these changes. We detected 10 nuclear phosphoproteins, designated p66, p45, p36, p33, p32, p27, p22, p19, p18 and p17, that show alterations in phosphorylation within 6-40 h of 1,25-(OH)2D3 treatment. When phosphorylation reactions were performed with isolated nuclei (in vitro), three of these proteins were phosphorylated in a calcium and phospholipid dependent manner: p66, p36, and p19 P66 was phosphorylated in response to 1,25-(OH)2D3 and purified in a manner similar to that used for nuclear lamins. Western blot analysis of 2-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels confirmed its identity as lamin B. Phosphorylation of p17 and p18 decreased following 1,25-(OH)2D3 treatment. We separated p17 and p18 by SDS-PAGE and obtained N-terminal amino acid sequence to identify these phosphorproteins as histones H2b and H3, respectively. P19 and p22 were both DNA-cellulose binding proteins whose phosphorylation was altered by 1,25-(OH)2D3 treatment. Increased phosphorylation of p27 was detected using 2-dimensional SDS-PAGE. Phosphorylation of nuclear proteins in the intact cell (in vivo), revealed increases in p66, p45, p36, and p33 phosphorylation and a decrease in p17 phosphorylation following 1,25-(OH)2D3 treatment. We detected an increase in phosphorylation of p32, which was extracted with salt from nuclei and migrated on SDS-PAGE similar to histone H1. Thus, we have identified 1,25-(OH)2D3-sensitive nuclear phosphoproteins, including lamin B and several histones. We have also detected and characterized several less abundant nuclear DNA binding phosphoproteins whose phosphorylation was affected by 1,25-(OH)2D3.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号