首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   12篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   18篇
  2012年   12篇
  2011年   16篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有118条查询结果,搜索用时 312 毫秒
81.
Various 3-nitropropionamides were synthesized and evaluated for in vitro activities against log and starved phase culture of two mycobacterial species and Mycobacterium tuberculosis (MTB) isocitrate lyase (ICL) enzyme inhibition studies. Among 22 compounds, 1-cyclopropyl-7-(3,5-dimethyl-4-(3-nitropropanoyl)piperazin-1-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (22) was found to be the most active compound in vitro with MICs of 0.16 and 0.04 μM against log- and starved-phase culture of MTB. Compound 22 also showed good enzyme inhibition of MTB ICL with IC(50) of 0.10 ± 0.01 μM. The docking studies also confirmed the binding potential of the compounds at the ICL active site.  相似文献   
82.
The aim of our present work was to develop indinavir O/W submicron lipid emulsions (SLEs) loaded with lipoamino acids for specific delivery to brain. Tetradecyl aspartic acid (A) and decyl glutamic acid (G) loaded stable SLEs of indinavir having a mean size range of 210–220 nm and average zeta potential of −23.54 ± 1.2 mV were developed using homogenization and ultrasonication. The cumulative % drug release from different SLEs varied in between 26% and 85%. The formulations, SLE, SLE-A3, and SLE-G3 were stable to the centrifugal stress, dilution stress, and storage at RT. The total drug content and entrapment efficiency were determined by HPLC method. During pharmacokinetic studies in male Wistar rats there was no significant difference in the serum levels of indinavir for SLE, SLE-A3 and SLE-G3 formulations at all time points. In tissue distribution studies, the therapeutic availability (TA) of indinavir in brain and kidneys for SLE-A3 were 4.27- and 2.66-fold whereas for SLE-G3 were 2.94 and 2.12 times, respectively, higher than that of indinavir solution. But when compared with that of SLE, in brain tissue the levels of indinavir from SLE-G3 and SLE-A3 varied in between 2.5- and 3.38-fold. While in case of the kidney, it was between 1.23- and 1.54-fold only. However, the TA is not significantly different in tissues like the heart, liver, and spleen. Thus, brain-specific delivery of indinavir was improved by including tetradecyl aspartic acid and decyl glutamic acid in submicron lipid emulsions.  相似文献   
83.
84.
Ligand-gated ion channels undergo conformational changes that transfer the energy of agonist binding to channel opening. Within ionotropic glutamate receptor (iGluR) subunits, this process is initiated in their bilobate ligand binding domain (LBD) where agonist binding to lobe 1 favors closure of lobe 2 around the agonist and allows formation of interlobe hydrogen bonds. AMPA receptors (GluAs) differ from other iGluRs because glutamate binding causes an aspartate-serine peptide bond in a flexible part of lobe 2 to rotate 180° (flipped conformation), allowing these residues to form cross-cleft H-bonds with tyrosine and glycine in lobe 1. This aspartate also contacts the side chain of a lysine residue in the hydrophobic core of lobe 2 by a salt bridge. We investigated how the peptide flip and electrostatic contact (D655-K660) in GluA3 contribute to receptor function by examining pharmacological and structural properties with an antagonist (CNQX), a partial agonist (kainate), and two full agonists (glutamate and quisqualate) in the wildtype and two mutant receptors. Alanine substitution decreased the agonist potency of GluA3(i)-D655A and GluA3(i)-K660A receptor channels expressed in HEK293 cells and differentially affected agonist binding affinity for isolated LBDs without changing CNQX affinity. Correlations observed in the crystal structures of the mutant LBDs included the loss of the D655-K660 electrostatic contact, agonist-dependent differences in lobe 1 and lobe 2 closure, and unflipped D(A)655-S656 bonds. Glutamate-stimulated activation was slower for both mutants, suggesting that efficient energy transfer of agonist binding within the LBD of AMPA receptors requires an intact tether between the flexible peptide flip domain and the rigid hydrophobic core of lobe 2.  相似文献   
85.
A series of new azoalkyl ether imidazo[2,1-b]benzothiazoles were developed via a convenient synthetic procedure. The antimicrobial assays showed that a good number of the prepared derivatives exhibited significant inhibitory properties against most of the tested strains. Especially 2-methyl-5-nitroimidazole derivative 5a presented superior inhibit activity against MRSA and B. typhi with MIC?=?4?μg/mL and MIC?=?1?μg/mL, respectively. The highly active compound 5a showed low toxicity against mammalian cells without obvious triggering of the development of bacterial resistance, and it also possessed rapid bactericidal efficacy. Molecular docking study exposed that the active molecule 5a could interact with the active site of S. aureus gyrase through hydrogen bond. Quantum chemical studies were also performed to explain the high antibacterial activity. Further investigation revealed that compound 5a could significantly associate with gyrase–DNA complex by mean of hydrogen bonds and could efficiently intercalate into MRSA DNA to form 5a–DNA supramolecular complex, which impart potent bioactivity.  相似文献   
86.
87.
We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.  相似文献   
88.
BackgroundGlioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. The inherent cellular diversity and interactions within tumor microenvironments represent significant challenges to effective treatment. Traditional culture methods such as adherent or sphere cultures may mask such complexities whereas three-dimensional (3D) organoid culture systems derived from patient cancer stem cells (CSCs) can preserve cellular complexity and microenvironments. The objective of this study was to determine if GBM organoids may offer a platform, complimentary to traditional sphere culture methods, to recapitulate patterns of clinical drug resistance arising from 3D growth.MethodsAdult and pediatric surgical specimens were collected and established as organoids. We created organoid microarrays and visualized bulk and spatial differences in cell proliferation using immunohistochemistry (IHC) staining, and cell cycle analysis by flow cytometry paired with 3D regional labeling. We tested the response of CSCs grown in each culture method to temozolomide, ibrutinib, lomustine, ruxolitinib, and radiotherapy.ResultsGBM organoids showed diverse and spatially distinct proliferative cell niches and include heterogeneous populations of CSCs/non-CSCs (marked by SOX2) and cycling/senescent cells. Organoid cultures display a comparatively blunted response to current standard-of-care therapy (combination temozolomide and radiotherapy) that reflects what is seen in practice. Treatment of organoids with clinically relevant drugs showed general therapeutic resistance with drug- and patient-specific antiproliferative, apoptotic, and senescent effects, differing from those of matched sphere cultures.ConclusionsTherapeutic resistance in organoids appears to be driven by altered biological mechanisms rather than physical limitations of therapeutic access. GBM organoids may therefore offer a key technological approach to discover and understand resistance mechanisms of human cancer cells.  相似文献   
89.
Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1-E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric 'core' provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an 'average' 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号