首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   12篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   18篇
  2012年   12篇
  2011年   16篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
101.
Escherichia coli (E. coli) bacteria have been identified to be the cause of variety of health outbreaks resulting from contamination of food and water. Timely and rapid detection of the bacteria is thus crucial to maintain desired quality of food products and water resources. A novel methodology proposed in this paper demonstrates for the first time, the feasibility of employing a bare fiber Bragg grating (bFBG) sensor for detection of E. coli bacteria. The sensor was fabricated in a photo‐sensitive optical fiber (4.2 µm/80 µm). Anti‐E. coli antibody was immobilized on the sensor surface to enable the capture of target cells/bacteria present in the sample solution. Strain induced on the sensor surface as a result of antibody immobilization and subsequent binding of E. coli bacteria resulted in unique wavelength shifts in the respective recording of the reflected Bragg wavelength, which can be exploited for the application of biosensing. Functionalization and antibody binding on to the fiber surface was cross validated by the color development resulting from the reaction of an appropriate substrate solution with the enzyme label conjugated to the anti‐E. coli antibody. Scanning electron microscope image of the fiber, further verified the E. coli cells bound to the antibody immobilized sensor surface.

  相似文献   

102.
Pseudomonas sp. strains C4, C5, and C6 utilize carbaryl as the sole source of carbon and energy. Identification of 1-naphthol, salicylate, and gentisate in the spent media; whole-cell O2 uptake on 1-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate; and detection of key enzymes, viz, carbaryl hydrolase, 1-naphthol hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, and gentisate dioxygenase, in the cell extract suggest that carbaryl is metabolized via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. Here, we demonstrate 1-naphthol hydroxylase and 1,2-dihydroxynaphthalene dioxygenase activities in the cell extracts of carbaryl-grown cells. 1-Naphthol hydroxylase is present in the membrane-free cytosolic fraction, requires NAD(P)H and flavin adenine dinucleotide, and has optimum activity in the pH range 7.5 to 8.0. Carbaryl-degrading enzymes are inducible, and maximum induction was observed with carbaryl. Based on these results, the proposed metabolic pathway is carbaryl --> 1-naphthol --> 1,2-dihydroxynaphthalene --> salicylaldehyde --> salicylate --> gentisate --> maleylpyruvate.  相似文献   
103.
A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.  相似文献   
104.
N-methyl-d-aspartate (NMDA) receptor activation involves a dynamic series of structural rearrangements initiated by glutamate binding to glycine-loaded receptors and culminates with the clearing of the permeation pathway, which allows ionic flux. Along this sequence, three rate-limiting transitions can be quantified with kinetic analyses of single-channel currents, even though the structural determinants of these critical steps are unknown. In inactive receptors, the major permeation barrier resides at the intersection of four M3 transmembrane helices, two from each GluN1 and GluN2 subunits, at the level of the invariant SYTANLAAF sequence, known as the lurcher motif. Because the A7 but not A8 residues in this region display agonist-dependent accessibility to extracellular solutes, they were hypothesized to form the glutamate-sensitive gate. We tested this premise by examining the reaction mechanisms of receptors with substitutions in the lurcher motifs of GluN1 or GluN2A subunits. We found that, consistent with their locations relative to the proposed activation gate, A8Y decreased open-state stability, whereas A7Y dramatically stabilized open states, primarily by preventing gate closure; the equilibrium distribution of A7Y receptors was strongly shifted toward active states and resulted in slower microscopic association and dissociation rate constants for glutamate. In addition, for both A8- and A7-substituted receptors, we noticed patterns of kinetic changes that were specific to GluN1 or GluN2 locations. This may be a first indication that the sequence of discernible kinetic transitions during NMDA receptor activation may reflect subunit-dependent movements of M3 helices. Testing this hypothesis may afford insight into the activation mechanism of NMDA receptors.  相似文献   
105.
Excess exposure to Mn causes a neurological disorder known as manganism which is similar to dystonic movements associated with Parkinson's disease. Manganism is largely restricted to occupations in which high atmospheric levels are prevalent which include Mn miners, welders and those employed in the ferroalloy processing or related industrial settings. T1 weighted MRI images reveal that Mn is deposited to the greatest extent in the globus pallidus, an area of the brain that is presumed to be responsible for the major CNS associated symptoms. Neurons within the globus pallidus receive glutamatergic input from the subthalamic nuclei which has been suggested to be involved in the toxic actions of Mn. The neurotoxic actions of Mn and glutamate are similar in that they both affect calcium accumulation in the mitochondria leading to apoptotic cell death. In this paper, we demonstrate that the combination of Mn and glutamate potentiates toxicity of neuronally differentiated P19 cells over that observed with either agent alone. Apoptotic signals ROS, caspase 3 and JNK were increased in an additive fashion when the two neurotoxins were combined. The anti-glutamatergic drug, riluzole, was shown to attenuate these apoptotic signals and prevent P19 cell death. Results of this study confirm, for the first time, that Mn toxicity is potentiated in the presence of glutamate and that riluzole is an effective antioxidant which protects against both Mn and glutamate toxicity.  相似文献   
106.
Angelman syndrome (AS) is a neuropsychiatric disorder characterized by autism, intellectual disability and motor disturbances. The disease is primarily caused by the loss of function of maternally inherited UBE3A. Ube3a maternal‐deficient mice recapitulates many essential feature of AS. These AS mice have been shown to be under chronic stress and exhibits anxiety‐like behaviour because of defective glucocorticoid receptor signalling. Here, we demonstrate that chronic stress in these mice could lead to down‐regulation of parvalbumin‐positive interneurons in the hippocampus and basolateral amygdala from early post‐natal days. Down‐regulation of parvalbumin‐positive interneurons number could be because of decrease in the expression of parvalbumin in these neurons. We also find that treatment with fluoxetine, a selective serotonin reuptake inhibitor, results in restoration of impaired glucocorticoid signalling, elevated serum corticosterone level, parvalbumin‐positive interneurons and anxiety‐like behaviours. Our findings suggest that impaired glucocorticod signalling in hippocampus and amygdala of AS mice is critical for the decrease in parvalbumin interneurons number, emergence of anxiety and other behavioural deficits and highlights the importance of fluoxetine in the recovery of these abnormalities.

  相似文献   

107.
Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV‐infected population. These seemingly harmless non‐pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV‐associated complications. Although immune‐evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome‐enriched fractions from Mycobacterium bovis Bacillus Calmette–Guérin (BCG) mono‐infected and HIV–M. bovis BCG co‐infected THP‐1 cells by LC‐MALDI‐MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co‐infection helped the survival of non‐pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co‐infection up‐regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co‐infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co‐infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition.  相似文献   
108.
Growth of Cryptococcus neoformans was inhibited by nine nitrogen and sulfur-containing sterols with a heteroatom positioned at C3, C7, C24, C25 or C32 in the lanostane frame. Analysis of the sterol composition of control and treated cells by GC-MS and 1H NMR has proven that the C-methylation reaction catalyzed by the sterol 24-C-methyltransferase (24-SMT) is the crucial first step in a kinetically favored pathway that fails to include obtusifoliol or zymosterol as intermediates. Cultures fed [methyl-2H3]methionine led to two deuterium atoms into each of the newly biosynthesized sterols forming a route lanosterol, eburicol (24(28)-methylene-24,25-dihydrolanosterol), 32-noreburicol and ergost-7-enol to ergosterol. Examination of the substrate specificity of a soluble 24-SMT from C. neoformans showed lanosterol to be the optimal acceptor molecule. Incubation with the test compounds generated induced amounts of lanosterol, eburicol or 32-noreburicol concurrent with a decrease of ergosterol. Among them 24(R,S),25-epiminolanosterol (inhibitor of 24-SMT) showed the most potent in vitro antifungal activity comparable to those of itraconazole (inhibitor of the 14-demethylase). Taken together, these data indicate that treatment with substrate-based inhibitors of 24-SMT, a catalyst not found in humans, can disrupt ergosterol homeostasis involved with fungal growth and therefore these compounds can provide leads for rational drug design of opportunistic pathogens.  相似文献   
109.
We report that GTP cyclohydrolase (GCH1), the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, is a key modulator of peripheral neuropathic and inflammatory pain. BH4 is an essential cofactor for catecholamine, serotonin and nitric oxide production. After axonal injury, concentrations of BH4 rose in primary sensory neurons, owing to upregulation of GCH1. After peripheral inflammation, BH4 also increased in dorsal root ganglia (DRGs), owing to enhanced GCH1 enzyme activity. Inhibiting this de novo BH4 synthesis in rats attenuated neuropathic and inflammatory pain and prevented nerve injury-evoked excess nitric oxide production in the DRG, whereas administering BH4 intrathecally exacerbated pain. In humans, a haplotype of the GCH1 gene (population frequency 15.4%) was significantly associated with less pain following diskectomy for persistent radicular low back pain. Healthy individuals homozygous for this haplotype exhibited reduced experimental pain sensitivity, and forskolin-stimulated immortalized leukocytes from haplotype carriers upregulated GCH1 less than did controls. BH4 is therefore an intrinsic regulator of pain sensitivity and chronicity, and the GTP cyclohydrolase haplotype is a marker for these traits.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号