首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   89篇
  国内免费   2篇
  567篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   12篇
  2015年   17篇
  2014年   13篇
  2013年   15篇
  2012年   25篇
  2011年   29篇
  2010年   21篇
  2009年   18篇
  2008年   13篇
  2007年   27篇
  2006年   22篇
  2005年   15篇
  2004年   10篇
  2003年   10篇
  2002年   8篇
  2001年   17篇
  2000年   15篇
  1999年   16篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   11篇
  1991年   12篇
  1990年   6篇
  1989年   13篇
  1988年   9篇
  1987年   10篇
  1986年   10篇
  1985年   5篇
  1984年   5篇
  1982年   6篇
  1980年   6篇
  1979年   10篇
  1978年   7篇
  1977年   8篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1973年   5篇
  1972年   4篇
  1971年   5篇
  1970年   5篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
71.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   
72.
The actin-myosin cytoskeleton is generally accepted to produce the contractile forces necessary for cellular processes such as cell rounding and migration. All vertebrates examined to date are known to express at least two isoforms of non-muscle myosin II, referred to as myosin IIA and myosin IIB. Studies of myosin IIA and IIB in cultured cells and null mice suggest that these isoforms perform distinct functions. However, how each myosin II isoform contributes individually to all the cellular functions attributed to "myosin II" has yet to be fully characterized. Using isoform-specific small-interfering RNAs, we found that depletion of either isoform resulted in opposing migration phenotypes, with myosin IIA- and IIB-depleted cells exhibiting higher and lower wound healing migration rates, respectively. In addition, myosin IIA-depleted cells demonstrated impaired thrombin-induced cell rounding and undertook a more motile morphology, exhibiting decreased amounts of stress fibers and focal adhesions, with concomitant increases in cellular protrusions. Cells depleted of myosin IIB, however, were efficient in thrombin-induced cell rounding, displayed a more retractile phenotype, and maintained focal adhesions but only in the periphery. Last, we present evidence that Rho kinase preferentially regulates phosphorylation of the regulatory light chain associated with myosin IIA. Our data suggest that the myosin IIA and IIB isoforms are regulated by different signaling pathways to perform distinct cellular activities and that myosin IIA is preferentially required for Rho-mediated contractile functions.  相似文献   
73.
Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho‐pelagic lifestyle and utilize oscillatory swimming—the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.  相似文献   
74.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
75.
We used Bayesian phylogenetic analysis of 5 kb of chloroplast DNA data from 68 Sapotaceae species to clarify phylogenetic relationships within Sapotoideae, one of the two major clades within Sapotaceae. Variation in substitution rates through time was shown to be a very important aspect of molecular evolution for this data set. Relative rates tests indicated that changes in overall rate have taken place in several lineages during the history of the group and Bayes factors strongly supported a covarion model, which allows the rate of a site to vary over time, over commonly used models that only allow rates to vary across sites. Rate variation over time was actually found to be a more important model component than rate variation across sites. The covarion model was originally developed for coding gene sequences and has so far only been tested for this type of data. The fact that it performed so well with the present data set, consisting mainly of data from noncoding spacer regions, suggests that it deserves a wider consideration in model based phylogenetic inference. Repeatability of phylogenetic results was very difficult to obtain with the more parameter rich models, and analyses with identical settings often supported different topologies. Overparameterization may be the reason why the MCMC did not sample from the posterior distribution in these cases. The problem could, however, be overcome by using less parameter rich evolutionary models, and adjusting the MCMC settings. The phylogenetic results showed that two taxa, previously thought to belong in Sapotoideae, are not part of this group. Eberhardtia aurata is the sister of the two major Sapotaceae clades, Chrysophylloideae and Sapotoideae, and Neohemsleya usambarensis belongs in Chrysophylloideae. Within Sapotoideae two clades, Sideroxyleae and Sapoteae, were strongly supported. Bayesian analysis of the character history of some floral morphological traits showed that the ancestral type of flower in Sapotoideae may have been characterized by floral parts (sepals, petals, stamens, and staminodes) in single whorls of five, entire corolla lobes, and seeds with an adaxial hilum.  相似文献   
76.
Neurohypophyseal peptide hormone activity is present in the pineal gland of mammals, and varies over a seasonal cycle. Pineal peptide levels, measured by arginine vasotocin (AVT) radioimmunoassay, increase dramatically for a brief time during August each year. The manner in which this cycle is regulated is as yet unknown. Input to the pineal from sympathetic axons arising in the superior cervical ganglia (SCG) is essential for the generation and regulation of the circadian rhythm in melatonin synthesis, and is the only pathway known to regulate pineal biochemical processes. It was of interest then to determine the impact of the SCG on the seasonal peptide cycle. Levels of pineal arginine vasotocin immunoactivity (iAVT) were monitored during August, 1984, in rats which had been superior cervical ganglionectomized (SCGX), in sham-operated and intact controls (L:D 12:12), and in rats subjected to L:D 22:2. The results indicate that SCGX does not abolish the seasonal cycle, but may influence the timing of the iAVT peak. Inhibition of pineal melatonin synthesis by exposure of rats to L:D 22:2 did not mimic the phase delay seen with SCGX, but did cause a significant increase in the amplitude of the August iAVT activity peak.  相似文献   
77.
78.
The effects of n-octanol and n-decanol on nerve membrane sodium channels were examined in internally perfused, voltage-clamped squid giant axons. Both n-octanol and n-decanol almost completely eliminated the residual sodium conductance at the end of 8-ms voltage steps. In contrast, peak sodium conductance was only partially reduced. This block of peak and residual sodium conductance was very reversible and seen with both internal and external alkanol application. The differential sensitivity of peak and residual conductance to alkanol treatment was eliminated after internal pronase treatment, suggesting that n-octanol and n-decanol enhance the normal inactivation mechanism rather than directly blocking channels in a time-dependent manner.  相似文献   
79.
C A Swenson  P A Ritchie 《Biochemistry》1979,18(17):3654-3658
The enthalpies of binding adenosine 5'-diphosphate (ADP) and 5'-adenylyl imidodiphosphate [AMP-P(NH)P] to rabbit skeletal myosin have been measured in Pipes and Tris buffers at pH 7.8 and 15 degrees C. For ADP the enthalpy of binding was exothermic, whereas the enthalpy of binding AMP-P(NH)P, a nonhydrolyzable ATP analogue, was small and endothermic. For the reaction of ATP and myosin, the development of enthalpy was resolved into two phases: a fast endothermic phase, which is the summation of binding and hydrolysis, and a slow exothermic phase, which is associated with product-release steps. These results are discussed in terms of their implications for energy transduction.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号