首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   22篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   12篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1987年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
21.
The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.  相似文献   
22.
23.
24.
Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.  相似文献   
25.
The paper describes the bio efficacy of a protease inhibitor; isolated from Allium sativumgarlic’ (ASPI); against Aedes aegypti mosquito, a well-known transmitter of dengue and Chikungunya. The purification of protease inhibitor from Allium sativumgarlic’ (ASPI) was carried out by ammonium sulfate precipitation followed by Fast Protein Liquid Chromatography using akta DEAE-Cellulose column. The protein fraction demonstrating trypsin inhibitory activity was further evaluated for its insecticidal activity using gut protease inhibition assay and larvicidal assay. ASPI is an inhibitor of porcine trypsin (IC50 of 650.726?μg/mL) and has molecular weight of ~15?kDa determined by SDS PAGE similar to other inhibitors of the Kunitz-type family (14–26?kDa). ASPI demonstrated 50% reduced activity of Ae. aegypti midgut proteases and showed a dose-dependent acute toxicity on Ae. aegypti 3rd instars exhibiting LC50 value of ~50.827?μg/mL. After ten days of larval exposure ASPI resulted in a 24-h delay of larval development and ~72% mortality at 61.5?μg/mL. These results suggest that ASPI may serve as potent insecticidal agent and hence opens a new gateway in the field of phyto-remediation.  相似文献   
26.
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein that plays a crucial role in virus infectivity. In this study, using the mesogenic strain Beaudette C (BC), we mutated three conserved amino acids thought to be part of the binding/catalytic active site in the HN protein. We also mutated five additional residues near the proposed active site that are nonconserved between BC and the avirulent strain LaSota. The eight recovered NDV HN mutants were assessed for effects on biological activities. While most of the mutations had surprisingly little effect, mutation at conserved residue Y526 reduced the neuraminidase, receptor binding, and fusion activities and attenuated viral virulence in eggs and young birds.Newcastle disease virus (NDV) is an avian pathogen of the genus Avulavirus in the family Paramyxoviridae (10). The envelope of NDV contains two surface glycoproteins, the fusion (F) protein and the HN (hemagglutinin-neuraminidase [NA]) protein. The F protein mediates viral penetration and requires cleavage-activation by host protease. Cleavability of the F protein is a major determinant of virulence. However, other viral proteins, including HN, also contribute to virulence (5). HN is a multifunctional glycoprotein. It recognizes sialic acid-containing receptors on cell surfaces; promotes the fusion activity of F protein, thereby allowing the virus to penetrate the cell surface; and acts as an NA that removes sialic acid from progeny virus particles to prevent viral self-aggregation (9).HN is a type II homotetrameric glycoprotein with a monomer length of 577 amino acids for most NDV strains (14). The ectodomain of the HN protein consists of a 95-amino-acid stalk region supporting a 428-amino-acid terminal globular head. Although mutations in the transmembrane and stalk regions of the HN protein can affect the structure and activities of the protein (11, 15), the antigenic, receptor recognition, and NA active sites are all localized in the globular head (12, 16). The X-ray crystal structure of the globular head of the NDV HN protein has identified residues that appear to contribute to receptor recognition, NA, and fusion activities (4). Previous studies have proposed that conserved residues R174, I175, D198, K236, R416, R498, Y526, and E547 are important in receptor recognition and NA activities and that residues R174 and E547 influence the fusion promotion activity of the HN protein (3, 4, 6). Although transfection studies using plasmids expressing HN mutants of NDV have highlighted the importance of these residues in different biological functions of the HN protein, their contribution to NDV biology and pathogenesis in the context of the complete virus was not known.In this study, we examined the roles of three of the above-named conserved residues, R416, R498, and Y526 (all located near the sialic acid binding site), in the biological activities and pathogenesis of the HN protein of NDV in the context of infectious virus. In addition, comparison of the HN protein sequence between the avirulent strain LaSota and the moderately virulent strain Beaudette C (BC) identified 12 amino acid differences in the globular head region of the HN protein (H203, T214, I219, S228, L269, A271, E293, G310, S494, E495, T502, and N568, named according to the BC amino acid assignment). We also examined five of these nonconserved residues, T214, I219, S494, E495, and N568, located in close proximity to residues identified earlier by crystal structure studies, to determine whether these might affect HN function and contribute to the difference in pathogenicity between the LaSota and BC strains (Fig. (Fig.11).Open in a separate windowFIG. 1.Three-dimensional structure of the NDV HN protein showing the positions of amino acid residues that were substituted in the present study. The residues are shown in space-filling mode and represented in different colors. The MacPymol (DeLano Scientific) software was used to generate the model of the globular domain of the NDV HN monomer. The structure was derived from the crystal structure of the NDV HN protein reported by Crennell et al. (4).We used site-directed mutagenesis (2) to introduce individual amino acid substitutions into a cDNA of the HN gene of strain BC. For the conserved residues, we changed arginine at positions 416 and 498 and tyrosine at position 526 to polar glutamine. For the nonconserved residues, the assignments T214, I219, S494, E495, and N568 of strain BC were altered to the corresponding assignments of strain LaSota: S214, V219, G494, V495, and D568, respectively. Each mutagenized HN gene was then inserted into a full-length cDNA clone of the BC antigenome. These clones were transfected into HEp2 cells, and mutant viruses were recovered as previously described (8). These viruses were designated according to the substitutions introduced: T214S, I219V, R416Q, S494G, E495V, R498Q, Y526Q, and N568D. The HN genes from recovered viruses were sequenced. This confirmed the presence of each introduced mutation and the lack of adventitious mutations in the HN gene. To determine the stability of each HN mutation, the recovered viruses were passaged five times in 9-day-old embryonated chicken eggs and five times in chicken embryo fibroblast DF-1 cells. Sequence analysis of the HN gene of the mutant viruses at each passage showed that the introduced mutations were unaltered (data not shown). To rule out the possibility that change in the HN protein sequence could be compensated for by a mutation in the F protein, the F gene from each recovered virus was sequenced. No compensatory mutations in the F gene were observed (data not shown). The HN protein content of each mutant virus, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining, was very similar to that of the parental BC virus (pBC) (Table (Table1).1). The multicycle growth kinetics of the recombinant HN mutant viruses in DF-1 cells (Fig. (Fig.2)2) showed that the replication kinetics of all of the HN mutant viruses were similar to those of pBC, with the exception of the Y526Q mutant, which showed delayed growth and had a lower virus yield (1.5 to 2.0 log10 PFU/ml) than the parental and other mutant viruses. In addition, the Y526Q mutant produced syncytia at 72 h, whereas the parental and other mutant viruses initiated syncytia at 24 h postinfection. These studies showed the importance of amino acid residue Y526 at the active site of the HN protein of NDV.Open in a separate windowFIG. 2.Multicycle growth kinetics of HN mutants of NDV in chicken embryo fibroblast (DF-1) cells. Cells were infected with the indicated parental or mutant virus at an multiplicity of infection of 0.01. Supernatant samples were collected at 8-h intervals until 64 h postinfection, and virus titers were determined at different time points by plaque assay. Values are averages from three independent experiments.

TABLE 1.

Biological activities of HN mutants of NDV
VirusExpressionaCell surface expressionbNA activitycHAd activitycFusiond
pBC100.00100.00100.00100.00100.00
T214S mutant110.1 ± 15.5102.5 ± 4.9109.1 ± 8.399.1 ± 8.2101.5 ± 4.2
I219V mutant105.8 ± 5.2100.1 ± 2.8112.2 ± 9.299.3 ± 9.592.9 ± 5.4
R416Q mutant101.2 ± 6.399.5 ± 2.5106.5 ± 9.1101.0 ± 9.190.6 ± 4.3
S494G mutant110.3 ± 12.5105.7 ± 6.587.6 ± 6.2103.2 ± 7.599.1 ± 2.4
E495V mutant106.1 ± 12.2101.2 ± 3.294.4 ± 3.1101.1 ± 7.289.2 ± 4.5
R498Q mutant108.5 ± 13.9106.9 ± 8.1102.8 ± 5.4101.8 ± 8.8102.0 ± 6.2
Y526Q mutant112.2 ± 15.6103.9 ± 4.166.2 ± 4.270.0 ± 4.150.4 ± 3.1
N568D mutant105.1 ± 7.898.9 ± 2.1102.5 ± 8.1103.7 ± 7.187.4 ± 5.2
Open in a separate windowaShown is the HN protein content of purified virus relative to that of the pBC parent determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie staining. All values are averages ± standard deviations of three independent experiments.bShown are the cell surface expression levels of HN mutants relative to the level of the pBC parent. Expression of the HN protein was quantitated by Western blot analysis using HN-specific monoclonal antibodies. All values are averages ± standard deviations of three independent experiments.cShown are the HAd and NA activities of HN mutants expressed as normalized values relative to the amount of HN expressed at the cell surface. Each value is relative to the activity of the pBC parent. All values are averages ± standard deviations of three independent experiments.dShown are the fusion promotion activity of HN mutants expressed relative to the activity of the pBC parent. Cell fusion was calculated as the ratio of the total number of nuclei in multinuclear cells to the total number of nuclei in the field. The values are averages ± standard deviations of three independent experiments.Next we analyzed whether the mutations in the HN protein modulated the biological activities of NDV in cultured cells (Table (Table1).1). Vero cells were infected with pBC or the HN mutant viruses, and cell surface expression was quantitated by Western blot analysis using HN-specific monoclonal antibodies. The amount of HN protein expressed on the cell surface by each mutant virus was similar to that of pBC. The NA activity of the mutant viruses was assayed by a fluorescence-based assay (13). The percent biological activity of each virus is shown relative to that of pBC, whose biological activities were considered to be 100%. The NA activity of the Y526Q mutant was 66% of that of pBC, which was the greatest reduction of all of the mutants, followed by 88% for the S494G virus. Hemadsorption (HAd) activity was assayed at 4°C by incubating the infected Vero cells with guinea pig red blood cells. The HAd activity of the Y526Q mutant was 70% of that of pBC, while the other mutants maintained HAd activity comparable to that of pBC. We also evaluated the fusion activity of each HN mutant virus in Vero cells (Table (Table1)1) by calculating the fusion index as described previously (7). The fusion activity of the Y526Q mutant virus was only 50% of that of pBC, followed by 89% for the E495V mutant. The other HN mutants did not have fusion activities different from that of pBC. These studies emphasize the importance of the tyrosine residue present at position 526, found near the sialic acid binding site of the HN protein of NDV, in fusion promotion and NA activities.To determine whether the differences in the in vitro biological characteristics of the Y526Q mutant virus resulted in decreased virulence in chickens in vivo, two internationally accepted pathogenicity tests were performed. The mean death time (MDT) test with 9-day-old embryonated chicken eggs was performed as described previously (1). The MDT was recorded as the time (in hours) for a minimum lethal dose of virus to kill all of the chicken embryos infected (Table (Table2).2). The MDT result showed a significant increase in the time required by the Y526Q HN mutant virus (98 h) to kill 9-day-old chicken embryos compared to that required for pBC (60 h), indicating a reduced virulence of the Y526Q mutant virus. The S494G HN mutant virus, involving a nonconserved residue, also had an MDT (70 h) slightly longer than that of pBC. The intracerebral pathogenicity index (ICPI) test was performed as described previously (1). Each virus was inoculated intracerebrally into groups of 10 1-day-old chicks. The birds were observed for paralysis and death once every 12 h for 8 days, and ICPI values were calculated (1). The ICPI values of both of these mutants were lower than that of pBC (Table (Table2).2). In aggregate, these results indicated that mutation of the residues at positions 526 and 494 attenuated the virus.

TABLE 2.

Pathogenicitya of HN mutants of NDV
VirusMDT (h)bICPI scorec
pBC581.51
T214S mutant59NDd
I219V mutant60ND
R416Q mutant59ND
S494G mutant701.36
E495V mutant58ND
R498Q mutant64ND
Y526Q mutant981.33
N568D mutant57ND
Open in a separate windowaThe virulence of the mutant and parental BC viruses was evaluated by MDT in 9-day-old chicken embryos and by ICPI in 1-day-old chickens.bThe MDT duration is >90 h for lentogenic strains, 60 to 90 h for mesogenic strains, and <60 h for velogenic strains.cThe ICPI values for velogenic strains approach the maximum score of 2.00, whereas lentogenic strains give values close to 0.dND, not determined.In summary, we investigated the importance of three conserved residues, namely, R416, R498, and Y526, which appear to be part of the active site of the HN protein (4). In the previous studies, mutation of R416 to Q or L essentially eliminated NA and strongly reduced or eliminated HAd activities in transfected cells, although effects on fusion activity were not evaluated (4, 6). Other substitutions at this position involving A, D, E, or K also strongly reduced both NA and HAd activities but resulted in only a marginal decrease in fusion activity (3). In contrast, in the present study, the R416Q mutation in the context of the complete infectious virus had little or no effect on the HAd, NA, and fusion activities and had no effect on pathogenicity as measured by MDT. In one previous study, mutation of R498 to Q resulted in a moderate reduction in NA activity and little effect on HAd activity when evaluated by cDNA transfection (4), whereas in other studies, mutation of R498 to Q or L had more-severe effects on NA and HAd activities (3, 6) but little effect on fusion activity (3). In contrast, in the present study, the same mutation in the context of infectious virus had little or no effect on HAd, NA, and fusion activities or on the MDT. Finally, when evaluated in previous work with transfected HN cDNA, mutation of Y526 to Q or L strongly reduced or eliminated both NA and HAd activities (4, 6). Fusion promotion was not measured in this previous study for the Y526Q mutant, but mutation to F or H, which also strongly inhibited NA and HAd activities, had no effect on fusion activity (3). In contrast, in the present study, the Y526Q mutation in the complete virus resulted in decreased HAd, NA, and fusion activities, as well as a reduction in pathogenicity. This highlighted the importance of residue Y526 in the biological activities of the HN protein. The various activities of the HN protein were much less sensitive to mutation when evaluated in the context of the complete virus than in the context of transfected cDNA. In addition, while there sometimes was dissociation of the NA, HAd, and fusion promotion activities in the transfected cDNA assay, it was not observed in the context of the complete mutant virus.Second, we investigated the functional importance of five other residues that differ between the lentogenic LaSota and mesogenic BC strains of NDV and are in close proximity to the above-mentioned conserved residues in the crystal structure. We found that mutations at these positions generally had little or no effect on the NA, HAd, or fusion promotion activity of the HN protein and did not alter the virulence of the virus. The one exception was the S494G mutation, which resulted in a modest reduction in NA activity and virulence. We previously showed that the HN protein of strain BC contributes to viral tropism and virulence, compared to strain LaSota (5). Thus, residue S494 may play a role in the difference between these two strains and may contribute to the tropism and virulence of the BC strain. This study indicates that mutating certain key amino acids in the globular head region of the NDV HN glycoprotein can attenuate the virulence of NDV and may provide a means to produce a live attenuated vaccine virus.  相似文献   
27.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   
28.
Virulent and moderately virulent strains of Newcastle disease virus (NDV), representing avian paramyxovirus serotype 1 (APMV-1), cause respiratory and neurological disease in chickens and other species of birds. In contrast, APMV-2 is avirulent in chickens. We investigated the role of the fusion (F) and hemagglutinin-neuraminidase (HN) envelope glycoproteins in these contrasting phenotypes by designing chimeric viruses in which the F and HN glycoproteins or their ectodomains were exchanged individually or together between the moderately virulent, neurotropic NDV strain Beaudette C (BC) and the avirulent APMV-2 strain Yucaipa. When we attempted to exchange the complete F and HN glycoproteins individually and together between the two viruses, the only construct that could be recovered was recombinant APMV-2 strain Yucaipa (rAPMV-2), containing the NDV F glycoprotein in place of its own. This substitution of NDV F into APMV-2 was sufficient to confer the neurotropic, neuroinvasive, and neurovirulent phenotypes, in spite of all being at reduced levels compared to what was seen for NDV-BC. When the ectodomains of F and HN were exchanged individually and together, two constructs could be recovered: NDV, containing both the F and HN ectodomains of APMV-2; and APMV-2, containing both ectodomains of NDV. This supported the idea that homologous cytoplasmic tails and matched F and HN ectodomains are important for virus replication. Analysis of these viruses for replication in vitro, syncytium formation, mean embryo death time, intracerebral pathogenicity index, and replication and tropism in 1-day-old chicks and 2-week-old chickens showed that the two contrasting phenotypes of NDV and APMV-2 could largely be transferred between the two backbones by transfer of homotypic F and HN ectodomains. Further analysis provided evidence that the homologous stalk domain of NDV HN is essential for virus replication, while the globular head domain of NDV HN could be replaced with that of APMV-2 with only a minimal attenuating effect. These results demonstrate that the F and HN ectodomains together determine the cell fusion, tropism, and virulence phenotypes of NDV and APMV-2 and that the regions of HN that are critical to replication and the species-specific phenotypes include the cytoplasmic tail and stalk domain but not the globular head domain.  相似文献   
29.
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.  相似文献   
30.

Background

Avian paramyxoviruses (APMV) consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.

Methodology/Principal Findings

APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt) long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3′N-P/V/W-M-F-HN-L-5′ with intergenic regions of 4–57 nt. The genome length follows the ‘rule of six’ and contains a 55-nt leader sequence at the 3′end and a 552 nt trailer sequence at the 5′ end. The phosphoprotein (P) gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R↓F) conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.

Conclusions/Significance

Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2–9. The availability of sequence information for all known APMV serotypes will facilitate studies in epidemiology and vaccinology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号