首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   95篇
  国内免费   3篇
  2022年   5篇
  2021年   9篇
  2019年   11篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   21篇
  2013年   39篇
  2012年   68篇
  2011年   60篇
  2010年   34篇
  2009年   22篇
  2008年   36篇
  2007年   53篇
  2006年   27篇
  2005年   27篇
  2004年   42篇
  2003年   25篇
  2002年   30篇
  2001年   41篇
  2000年   18篇
  1999年   14篇
  1997年   8篇
  1996年   12篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   14篇
  1990年   12篇
  1989年   19篇
  1988年   11篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   12篇
  1978年   6篇
  1976年   12篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1972年   10篇
  1970年   7篇
  1968年   4篇
  1966年   5篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
81.
The 3C protease (3C(pro)) from foot-and-mouth disease virus (FMDV), the causative agent of a widespread and economically devastating disease of domestic livestock, is a potential target for antiviral drug design. We have determined the structure of a new crystal form of FMDV 3C(pro), a chymotrypsin-like cysteine protease, which reveals features that are important for catalytic activity. In particular, we show that a surface loop which was disordered in previous structures adopts a beta-ribbon structure that is conformationally similar to equivalent regions on other picornaviral 3C proteases and some serine proteases. This beta-ribbon folds over the peptide binding cleft and clearly contributes to substrate recognition. Replacement of Cys142 at the tip of the beta-ribbon with different amino acids has a significant impact on enzyme activity and shows that higher activity is obtained with more hydrophobic side chains. Comparison of the structure of FMDV 3C(pro) with homologous enzyme-peptide complexes suggests that this correlation arises because the side chain of Cys142 contacts the hydrophobic portions of the P2 and P4 residues in the peptide substrate. Collectively, these findings provide compelling evidence for the role of the beta-ribbon in catalytic activity and provide valuable insights for the design of FMDV 3C(pro) inhibitors.  相似文献   
82.
Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis--an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components--and provides a new molecular target for studies of obesity.  相似文献   
83.
How myosin VI coordinates its heads during processive movement   总被引:3,自引:0,他引:3       下载免费PDF全文
A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily--kinesin I.  相似文献   
84.
The Met receptor tyrosine kinase regulates a complex array of cellular behaviors collectively known as "invasive growth." While essential for normal development and wound repair, this program is frequently co-opted by tumors to promote their own growth, motility, and invasion. Met is overexpressed in a variety of human tumors, and this aberrant expression correlates with poor patient prognosis. Previous studies indicate that Met receptor levels are governed in part by cbl-mediated ubiquitination and degradation, and uncoupling of Met from cbl-mediated ubiquitination promotes its transforming activity. Here we describe a novel mechanism for Met degradation. We find that the Met receptor interacts with the transmembrane protein LRIG1 independent of hepatocyte growth factor (HGF) stimulation and that LRIG1 destabilizes the Met receptor in a cbl-independent manner. Overexpression of LRIG1 destabilizes endogenous Met receptor in breast cancer cells and impairs their ability to respond to HGF. LRIG1 knockdown increases Met receptor half-life, indicating that it plays an essential role in Met degradation. Finally, LRIG1 opposes Met synergy with the ErbB2/Her2 receptor tyrosine kinase in driving cellular invasion. We conclude that LRIG1 is a novel suppressor of Met function, serving to regulate cellular receptor levels by promoting Met degradation in a ligand- and cbl-independent manner.  相似文献   
85.
Developmental models for skin exist in terrestrial and amphibious vertebrates but there is a lack of information in aquatic vertebrates. We have analysed skin epidermal development of a bony fish (teleost), the most successful group of extant vertebrates. A specific epidermal type I keratin cDNA (hhKer1), which may be a bony-fish-specific adaptation associated with the divergence of skin development (scale formation) compared with other vertebrates, has been cloned and characterized. The expression of hhKer1 and collagen 1α1 in skin taken together with the presence or absence of keratin bundle-like structures have made it possible to distinguish between larval and adult epidermal cells during skin development. The use of a flatfish with a well-defined larval to juvenile transition as a model of skin development has revealed that epidermal larval basal cells differentiate directly to epidermal adult basal cells at the climax of metamorphosis. Moreover, hhKer1 expression is downregulated at the climax of metamorphosis and is inversely correlated with increasing thyroxin levels. We suggest that, whereas early mechanisms of skin development between aquatic and terrestrial vertebrates are conserved, later mechanisms diverge. This work was carried out within the project “Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis” (Q5RS-2002-01192) with financial support from the Commission of the European Communities. It does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by Pluriannual funding to CCMAR by the Portuguese Science and Technology Council. M.A. Campinho was sponsored by the Portuguese Ministry of Science (grant no. SFRH/BD/6133/2001).  相似文献   
86.
Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase.  相似文献   
87.
The complex history of the domestication of rice   总被引:10,自引:1,他引:9  
BACKGROUND: Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. SCOPE: Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. CONCLUSIONS: The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of alleles will allow scientists to better understand our ancestors and breed better rice for our descendents.  相似文献   
88.
Real-time PCR was used to detect and quantify Mycobacterium bovis cells in naturally infected soil and badger feces. Immunomagnetic capture, immunofluorescence, and selective culture confirmed species identification and cell viability. These techniques will prove useful for monitoring M. bovis in the environment and for elucidating transmission routes between wildlife and cattle.  相似文献   
89.
Previously we reported the discovery and initial optimization of a novel anthranilic acid derived class of antibacterial agents which suffered from extensive protein binding. This report describes efforts directed toward understanding the relationship of the acidity of the carboxylic acid with the extent of protein binding. The pK(a) of the acid was modified via the synthesis of a number of anthranilic acid analogs which vary the aromatic ring substituent at the 4-position. The pK(a) and HSA binding constants have been determined for each of the analogs. Our results indicate a correlation between pK(a) and HSA K(d). The physical properties and antibacterial activities will be discussed as well as how these results help address the protein binding issue with this series of compounds.  相似文献   
90.
The recently solved structure of the myosin VI motor demonstrates that the unique insert at the end of the motor is responsible for the reversal of the normal myosin directionality. A second class-specific insert near the nucleotide-binding pocket contributes to myosin VI's unique kinetic tuning, allowing it to function either as an actin-based transporter or as an anchoring protein. Recent biochemical and biophysical studies have shown that the native molecule can form dimers upon clustering, and cell biological studies have demonstrated that it clearly does play both transport and anchoring roles in cells. These mechanistic insights allow us to speculate on how unusual aspects of myosin VI structure and function allow it to fill unique niches in cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号