首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   782篇
  免费   94篇
  2022年   6篇
  2021年   9篇
  2019年   11篇
  2017年   7篇
  2016年   13篇
  2015年   27篇
  2014年   21篇
  2013年   34篇
  2012年   67篇
  2011年   59篇
  2010年   33篇
  2009年   21篇
  2008年   36篇
  2007年   53篇
  2006年   27篇
  2005年   27篇
  2004年   40篇
  2003年   25篇
  2002年   29篇
  2001年   39篇
  2000年   18篇
  1999年   13篇
  1997年   6篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   13篇
  1990年   12篇
  1989年   17篇
  1988年   11篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1979年   11篇
  1978年   5篇
  1977年   4篇
  1976年   12篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1972年   10篇
  1970年   7篇
  1968年   4篇
  1966年   5篇
排序方式: 共有876条查询结果,搜索用时 187 毫秒
781.
During development of Drosophila, cell proliferation and size are known to be regulated by insulin. Here we use Drosophila Kc cells to examine the molecular basis for the control of cell growth by insulin. Growing cells in the presence of insulin increased cell number above control levels at 16, 24, 48 and 72 h. We have demonstrated a novel anti-apoptotic effect of insulin (approximately 50%) in these cells, measured by caspase 3-like activity, which contributed to the increase in cell number. The anti-apoptotic effect was observed both in control cells and those in which apoptosis was induced by ultraviolet irradiation. An approximately 2-fold stimulation of bromodeoxyuridine incorporation demonstrated that insulin also increased Kc cell proliferation by stimulating new DNA synthesis. The ability of insulin to increase cell number, stimulate bromodeoxyuridine incorporation and reduce caspase 3-like activity was prevented by PD98059, which inhibits activation of the Drosophila extracellular signal regulated kinase (DERK) pathway, and was unaffected by wortmannin, an inhibitor of Drosophila phosphatidylinositol 3-kinase (DPI3K). Insulin also increased cell size approximately 2-fold and this was prevented by wortmannin and rapamycin, an inhibitor of Drosphilia target of rapamycin (DTOR). In summary, we show that DERK plays an important role in mediating the effect of insulin to reduce apoptosis and increase DNA synthesis whereas the DPI3K/DTOR/Dp70S6 kinase pathway mediates effects of insulin on cell size in Drosophila Kc cells.  相似文献   
782.
Decorated actin provides a model system for studying the strong interaction between actin and myosin. Cryo-energy-filter electron microscopy has recently yielded a 14 A resolution map of rabbit skeletal actin decorated with chicken skeletal S1. The crystal structure of the cross-bridge from skeletal chicken myosin could not be fitted into the three-dimensional electron microscope map without some deformation. However, a newly published structure of the nucleotide-free myosin V cross-bridge, which is apparently already in the strong binding form, can be fitted into the three-dimensional reconstruction without distortion. This supports the notion that nucleotide-free myosin V is an excellent model for strongly bound myosin and allows us to describe the actin-myosin interface. In myosin V the switch 2 element is closed although the lever arm is down (post-power stroke). Therefore, it appears likely that switch 2 does not open very much during the power stroke. The myosin V structure also differs from the chicken skeletal myosin structure in the nucleotide-binding site and the degree of bending of the backbone beta-sheet. These suggest a mechanism for the control of the power stroke by strong actin binding.  相似文献   
783.
784.
Competitive sorption of platinum and palladium on chitosan derivatives   总被引:3,自引:0,他引:3  
Glutaraldehyde-cross-linked chitosan (GCC), thiourea derivative of chitosan (TGC) and rubeanic acid derivative of chitosan (RADC) have previously been shown to be very efficient at removing platinum and palladium from single component dilute acidic solutions. This study examines the competitive sorption of these metal anions in bi-component mixtures for GCC, TGC and RADC. Palladium sorption is less sensitive to the presence of platinum than the reverse: the maximum sorption capacity decreases less for palladium than for platinum in the presence of the competitor anion (the metals being in their chloro-metal forms). Moreover, the Langmuir-shape of the sorption isotherm for palladium is unaffected (with the usual plateau reached at low residual palladium), while in the case of platinum sorption, the isotherms exhibit a significant decrease of the sorption capacity at high residual platinum concentration which increases with increasing concentrations of palladium. RADC is more selective for palladium over platinum than the other chitosan derivatives. A preliminary study of the competitive sorption kinetics in both batch and fixed bed systems is presented for RADC and confirms the higher affinity of the sorbent for palladium than for platinum.  相似文献   
785.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.  相似文献   
786.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   
787.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   
788.
789.
790.
De La Cruz EM  Wells AL  Sweeney HL  Ostap EM 《Biochemistry》2000,39(46):14196-14202
Recent studies on myosin V report a number of kinetic differences that may be attributed to the different heavy chain (chicken vs mouse) and light chain (essential light chains vs calmodulin) isoforms used. Understanding the extent to which individual light chain isoforms contribute to the kinetic behavior of myosin V is of critical importance, since it is unclear which light chains are bound to myosin V in cells. In addition, all studies to date have used alpha-skeletal muscle actin, whereas myosin V is in nonmuscle cells expressing beta- and gamma-actin. Therefore, we characterized the actin and light chain dependence of single-headed myosin V kinetics. The maximum actin-activated steady-state ATPase rate (V(max)) of a myosin V construct consisting of the motor domain and first light chain binding domain is the same when either of two essential light chain isoforms or calmodulin is bound. However, with bound calmodulin, the K(ATPase) is significantly higher and there is a reduction in the rate and equilibrium constants for ATP hydrolysis, indicating that the essential light chain favors formation of the M. ADP.P(i) state. No kinetic parameters of myosin V are strongly influenced by the actin isoform. ADP release from the actin-myosin complex is the rate-limiting step in the ATPase cycle with all actin and light chain isoforms. We postulate that although there are significant light-chain-dependent alterations in the kinetics that could affect myosin V processivity in in vitro assays, these differences likely are minimized under physiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号