排序方式: 共有101条查询结果,搜索用时 15 毫秒
61.
Elena V. Romanova Kosei Sasaki Vera Alexeeva Ferdinand S. Vilim Jian Jing Timothy A. Richmond Klaudiusz R. Weiss Jonathan V. Sweedler 《PloS one》2012,7(11)
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan. 相似文献
62.
Peptides are chiral molecules with their structure determined by the composition and configuration of their amino acid building blocks. The naturally occurring amino acids, except glycine, possess two chiral forms. This allows the formation of multiple peptide diastereomers that have the same sequence. Although living organisms use l-amino acids to make proteins, a group of d-amino acid-containing peptides (DAACPs) has been discovered in animals that have at least one of their residues isomerized to the d-form via an enzyme-catalyzed process. In many cases, the biological functions of these peptides are enhanced due to this structural conversion. These DAACPs are different from those known to occur in bacterial cell wall and antibiotic peptides, the latter of which are synthesized in a ribosome-independent manner. DAACPs have now also been identified in a number of distinct groups throughout the Metazoa. Their serendipitous discovery has often resulted from discrepancies observed in bioassays or in chromatographic behavior between natural peptide fractions and peptides synthesized according to a presumed all-l sequence. Because this l to d post-translational modification is subtle and not detectable by most sequence determination approaches, it is reasonable to suspect that many studies have overlooked this change; accordingly, DAACPs may be more prevalent than currently thought. Although diastereomer separation techniques developed with synthetic peptides in recent years have greatly aided in the discovery of natural DAACPs, there is a need for new, more robust methods for naturally complex samples. In this review, a brief history of DAACPs in animals is presented, followed by discussion of a variety of analytical methods that have been used for diastereomeric separation and detection of peptides. 相似文献
63.
Miller LK Hou X Rodriguiz RM Gagnidze K Sweedler JV Wetsel WC Devi LA 《Journal of neurochemistry》2011,119(5):1074-1085
An increasing body of evidence suggests that endothelin-converting enzyme-2 (ECE-2) is a non-classical neuropeptide processing enzyme. Similar to other neuropeptide processing enzymes, ECE-2 exhibits restricted neuroendocrine distribution, intracellular localization, and an acidic pH optimum. However, unlike classical neuropeptide processing enzymes, ECE-2 exhibits a non-classical cleavage site preference for aliphatic and aromatic residues. We previously reported that ECE-2 cleaves a number of neuropeptides at non-classical sites in vitro; however its role in peptide processing in vivo is poorly understood. Given the recognized roles of neuropeptides in pain and opiate responses, we hypothesized that ECE-2 knockout (KO) mice might show altered pain and morphine responses compared with wild-type mice. We find that ECE-2 KO mice show decreased response to a single injection of morphine in hot-plate and tail-flick tests. ECE-2 KO mice also show more rapid development of tolerance with prolonged morphine treatment and fewer signs of naloxone-precipitated withdrawal. Peptidomic analyses revealed changes in the levels of a number of spinal cord peptides in ECE-2 KO as compared to wild-type mice. Taken together, our findings suggest a role for ECE-2 in the non-classical processing of spinal cord peptides and morphine responses; however, the precise mechanisms through which ECE-2 influences morphine tolerance and withdrawal remain unclear. 相似文献
64.
Background
When natural hybridization occurs at sites where the hybridizing species differ in abundance, the pollen load delivered to the rare species should be predominantly from the common species. Previous authors have therefore proposed a hypothesis on the direction of hybridization: interspecific hybrids are more likely to have the female parent from the rare species and the male parent from the common species. We wish to test this hypothesis using data of plant hybridizations both from our own experimentation and from the literature.Results
By examining the maternally inherited chloroplast DNA of 6 cases of F1 hybridization from four genera of plants, we infer unidirectional hybridization in most cases. In all 5 cases where the relative abundance of the parental species deviates from parity, however, the direction is predominantly in the direction opposite of the prediction based strictly on numerical abundance.Conclusion
Our results show that the observed direction of hybridization is almost always opposite of the predicted direction based on the relative abundance of the hybridizing species. Several alternative hypotheses, including unidirectional postmating isolation and reinforcement of premating isolation, were discussed. 相似文献65.
Norman Atkins Jr Jennifer W. Mitchell Elena V. Romanova Daniel J. Morgan Tara P. Cominski Jennifer L. Ecker John E. Pintar Jonathan V. Sweedler Martha U. Gillette 《PloS one》2010,5(9)
Background
Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Methodology/Principal Findings
Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Conclusions/Significance
Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock. 相似文献66.
Markus Sällman Almén Karl JV Nordström Robert Fredriksson Helgi B Schiöth 《BMC biology》2009,7(1):50-14
Background
Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins. 相似文献67.
Mass spectrometry imaging and profiling of individual cells and subcellular structures provide unique analytical capabilities for biological and biomedical research, including determination of the biochemical heterogeneity of cellular populations and intracellular localization of pharmaceuticals. Two mass spectrometry technologies-secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI MS)-are most often used in micro-bioanalytical investigations. Recent advances in ion probe technologies have increased the dynamic range and sensitivity of analyte detection by SIMS, allowing two- and three-dimensional localization of analytes in a variety of cells. SIMS operating in the mass spectrometry imaging (MSI) mode can routinely reach spatial resolutions at the submicron level; therefore, it is frequently used in studies of the chemical composition of subcellular structures. MALDI MS offers a large mass range and high sensitivity of analyte detection. It has been successfully applied in a variety of single-cell and organelle profiling studies. Innovative instrumentation such as scanning microprobe MALDI and mass microscope spectrometers enables new subcellular MSI measurements. Other approaches for MS-based chemical imaging and profiling include those based on near-field laser ablation and inductively-coupled plasma MS analysis, which offer complementary capabilities for subcellular chemical imaging and profiling. 相似文献
68.
Elena V. Romanova Ji Eun Lee Neil L. Kelleher Jonathan V. Sweedler Joshua M. Gulley 《Journal of neurochemistry》2012,123(2):276-287
Repeated exposure to amphetamine (AMPH) induces long‐lasting behavioral changes, referred to as sensitization, that are accompanied by various neuroadaptations in the brain. To investigate the chemical changes that occur during behavioral sensitization, we applied a comparative proteomics approach to screen for neuropeptide changes in a rodent model of AMPH‐induced sensitization. By measuring peptide profiles with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and comparing signal intensities using principal component analysis and variance statistics, subsets of peptides are found with significant differences in the dorsal striatum, nucleus accumbens, and medial prefrontal cortex of AMPH‐sensitized male Sprague–Dawley rats. These biomarker peptides, identified in follow‐up analyses using liquid chromatography and tandem mass spectrometry, suggest that behavioral sensitization to AMPH is associated with complex chemical adaptations that regulate energy/metabolism, neurotransmission, apoptosis, neuroprotection, and neuritogenesis, as well as cytoskeleton integrity and neuronal morphology. Our data contribute to a growing number of reports showing that in addition to the mesolimbic dopamine system, which is the best known signaling pathway involved with reinforcing the effect of psychostimulants, concomitant chemical changes in other pathways and in neuronal organization may play a part in the overall effect of chronic AMPH exposure on behavior. 相似文献
69.
We describe structural properties and biological activities of two related O-glycosylated peptide toxins isolated from injected (milked) venom of Conus striatus, a piscivorous snail that captures prey by injecting a venom that induces a violent, spastic paralysis. One 30 amino acid toxin is identified as kappaA-SIVA (termed s4a here), and another 37 amino acid toxin, s4b, corresponds to a putative peptide encoded by a previously reported cDNA. We confirm the amino acid sequences and carry out structural analyses of both mature toxins using multiple mass spectrometric techniques. These include electrospray ionization ion-trap mass spectrometry and nanoelectrospray techniques for small volume samples, as well as matrix-assisted laser desorption/ionization time of flight mass spectrometric analysis as a complementary method to assist in the determination of posttranslational modifications, including O-linked glycosylation. Physiological experiments indicate that both s4a and s4b induce intense repetitive firing of the frog neuromuscular junction, leading to a tetanic contracture in muscle fiber. These effects apparently involve modification of voltage-gated sodium channels in motor axons. Notably, application of either s4a or s4b alone mimics the biological effects of the whole injected venom on fish prey. 相似文献
70.
At 1 hr to 14 days after total-body exposure of guinea pigs to 3.0 Gy 60Co, changes were detected in prostaglandin concentrations in bronchial airway tissues. At 3 hr postexposure, tissue levels of PGE were significantly elevated, while at 48 hr transiently elevated levels of PGF2 alpha were observed. By 72 hr, levels returned to control values. Airway synthesis of thromboxane B2 in irradiated animals did not differ from that in controls. Also assessed were the capacities of bronchial airway preparations to respond to H-1 receptor stimulation by the exogenous addition of histamine or transmembrane divalent cation transport stimulation with ionophore. Tissues from irradiated animals demonstrated alterations in the amount and type of prostaglandins generated, varying with time postirradiation. 相似文献