排序方式: 共有101条查询结果,搜索用时 0 毫秒
31.
苏云金芽胞杆菌幕虫亚种T02菌株的伴胞晶体在芽胞外壁内侧形成,呈现晶胞粘连的现象。在此菌株中克隆了cry26Aa和cry28Aa两个基因,并对晶胞粘连现象与质粒的相关性做了系统研究。通过消除幕虫亚种T02菌株的质粒,得到了仅消除cry26Aa所在质粒的菌株BMB1151和无质粒的菌株BMB1152。通过穿梭载体将cry26Aa和cry28Aa两个基因分别和同时转化无质粒突变株BMB1152并表达,形成的晶体与芽胞独立存在不能粘连,表明在幕虫亚种染色体背景下仅仅cry的表达不能形成晶胞粘连现象,从而推断晶胞粘连现象可能与幕虫亚种两个基因所在的质粒有关;进一步的研究发现将cry26Aa在仅消除cry26Aa所在质粒的突变株BMB1151中表达,形成的晶体与芽胞也分别独立存在不能粘连,从而进一步推断幕虫亚种晶胞粘连现象与cry26Aa所在质粒有关。 相似文献
32.
Collins JJ Hou X Romanova EV Lambrus BG Miller CM Saberi A Sweedler JV Newmark PA 《PLoS biology》2010,8(10):e1000509
Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites. 相似文献
33.
Functionalized nucleoside 5'-triphosphates for in vitro selection of new catalytic ribonucleic acids
Matulic-Adamic J Daniher AT Karpeisky A Haeberli P Sweedler D Beigelman L 《Bioorganic & medicinal chemistry letters》2000,10(11):1299-1302
A series of novel 2'-modified nucleoside 5'-triphosphates was synthesized. The amino, imidazole, and carboxylate functionalities were attached to the 5-position of pyrimidine base of these molecules through alkynyl and alkyl spacers, respectively. Two different phosphorylation methods were used to optimize the yields of these highly modified triphosphates. 相似文献
34.
Cell-to-cell chemical signaling plays multiple roles in coordinating the activity of the functional elements of an organism, with these elements ranging from a three-neuron reflex circuit to the entire animal. In recent years, single-cell mass spectrometry (MS) has enabled the discovery of cell-to-cell signaling molecules from the nervous system of a number of invertebrates. We describe a protocol for analyzing individual cells from rat pituitary using matrix-assisted laser desorption/ionization MS. Each step in the sample preparation process, including cell stabilization, isolation, sample preparation, signal acquisition and data interpretation, is detailed here. Although we employ this method to investigate peptides in individual pituitary cells, it can be adapted to other cell types and even subcellular sections from a range of animals. This protocol allows one to obtain 20-30 individual cell samples and acquire mass spectra from them in a single day. 相似文献
35.
Squires LN Jakubowski JA Stuart JN Rubakhin SS Hatcher NG Kim WS Chen K Shih JC Seif I Sweedler JV 《The Journal of biological chemistry》2006,281(19):13463-13470
Serotonin (5-HT) functions as a neurotransmitter and neuromodulator in both the central and enteric nervous systems of mammals. The dynamic degradation of 5-HT metabolites in 5-HT-containing nervous system tissues is monitored by capillary electrophoresis with wavelength-resolved laser-induced native fluorescence detection in an effort to investigate known and novel 5-HT catabolic pathways. Tissue samples from wild type mice, genetically altered mice, Long Evans rats, and cultured differentiated rat pheochromocytoma PC-12 cells, are analyzed before and after incubation with excess 5-HT. From these experiments, several new compounds are detected. One metabolite, identified as 5-hydroxyindole thiazoladine carboxylic acid (5-HITCA), has been selected for further study. In 5-HT-incubated central and enteric nervous system tissue samples and differentiated PC-12 cells, 5-HITCA forms at levels equivalent to 5-hydroxyindole acetic acid, via a condensation reaction between L-cysteine and 5-hydroxyindole acetaldehyde. In the enteric nervous system, 5-HITCA is detected without the addition of 5-HT. The levels of L-cysteine and homocysteine in rat brain mitochondria are measured between 80 and 140 microm and 1.9 and 3.4 microm, respectively, demonstrating that 5-HITCA can be formed using available, free L-cysteine in these tissues. The lack of significant accumulation of 5-HITCA in the central and enteric nervous systems, along with data showing the degradation of 5-HITCA into 5-hydroxyindole acetaldehyde, suggests that an equilibrium coupled to the enzyme, aldehyde dehydrogenase type 2, prevents the accumulation of 5-HITCA. Even so, the formation of 5-HITCA represents a catabolic pathway of 5-HT that can affect the levels of 5-HT-derived compounds in the body. 相似文献
36.
L Beigelman A Karpeisky J Matulic-Adamic P Haeberli D Sweedler N Usman 《Nucleic acids research》1995,23(21):4434-4442
Several 2'-modified ribonucleoside phosphoramidites have been prepared for structure-activity studies of the hammerhead ribozyme. The aim of these studies was to design and synthesize catalytically active and nuclease-resistant ribozymes. Synthetic schemes for stereoselective synthesis of the R isomer of 2'-deoxy-2'-C-allyl uridine and cytidine phosphoramidites, based on the Keck allylation procedure, were developed. Protection of the 2'-amino group in 2'-deoxy-2'-aminouridine was optimized and a method for the convenient preparation of 5'-O-dimethoxytrityl-2'-deoxy-2'-phthalimidouridine 3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) was developed. During the attempted preparation of the 2'-O-t-butyldimethylsilyl-3'-O-phosphoramidite of arabinouridine a reversed regioselectivity in the silylation reaction, compared with the published procedure, was observed, as well as the unexpected formation of the 2,2'-anhydronucleoside. A possible mechanism for this cyclization is proposed. The synthesis of 2'-deoxy-2'-methylene and 2'-deoxy-2'-difluoromethylene uridine phosphoramidites is described. Based on a '5-ribose' model for essential 2'-hydroxyls in the hammerhead ribozyme these 2'-modified monomers were incorporated at positions U4 and/or U7 of the catalytic core. A number of these ribozymes had almost wild-type catalytic activity and improved stability in human serum, compared with an all-RNA molecule. 相似文献
37.
Stuart JN Zhang X Jakubowski JA Romanova EV Sweedler JV 《Journal of neurochemistry》2003,84(6):1358-1366
Serotonin is a vital neurotransmitter for the functioning of the nervous system in species throughout the animal phyla. Despite its ubiquitous nature, the metabolism of this molecule has yet to be completely elucidated in even the most basic of organisms. Two novel serotonin catabolites, serotonin-O-sulfate and gamma-glu-serotonin-O-sulfate, are chemically characterized using capillary electrophoresis with wavelength-resolved fluorescence detection and electrospray mass spectrometry, and the formation of gamma-glu-serotonin in Aplysia californica is confirmed. These novel compounds appear to be synthesized enzymatically, and known mammalian enzymes exist for all serotonin transformations observed here. The pathway of serotonin inactivation depends upon the type of neuronal tissue subjected to neurotransmitter incubation, with assorted serotonin products observed in distinct locations. Initially demonstrated to be in the metacerebral cell (MCC) soma, the new serotonin metabolite serotonin-O-sulfate may contribute to important functions in the serotonergic system beyond simple serotonin inactivation. 相似文献
38.
Vanmali BH Romanova EV Messner MC Singh M Maruniak J Sweedler J Kirk MD 《Journal of neurobiology》2003,56(1):78-93
Mechanisms that regulate neurite outgrowth are phylogenetically conserved, including the signaling molecules involved. Here, we describe neurotrophic effects on isolated bag cell neurons (BCNs) of substrate-bound growth factors endogenous to the sea slug Aplysia californica. Sheath cells dissociated from the pleural-visceral connectives of the Aplysia CNS and arterial cells dissociated from the anterior aorta enhance neurite outgrowth when compared to controls, i.e., BCNs grown in defined medium alone. In addition, the substrate remaining after sheath cells or arterial cells are killed significantly enhances growth, relative to all other conditions tested. For instance, primary neurites are more numerous and greater in length for BCNs cultured on substrate produced by arterial cells. These results suggest that sheath and arterial cells produce growth-promoting factors, some of which are found in the substrates produced by these cell types. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we found that Aplysia collagen-like peptides are produced by dissociated arterial cells, and therefore likely contribute to the observed growth effects. Collagen-like peptides and other factors produced by sheath and arterial cells likely influence neurite growth in the Aplysia CNS during development, learning and memory, and regeneration after injury. 相似文献
39.
Zhang X Kim WS Hatcher N Potgieter K Moroz LL Gillette R Sweedler JV 《The Journal of biological chemistry》2002,277(50):48472-48478
4,5-Diaminofluorescein (DAF-2) is widely used for detection and imaging of NO based on its sensitivity, noncytotoxicity, and specificity. In the presence of oxygen, NO and NO-related reactive nitrogen species nitrosate 4,5-diaminofluorescein to yield the highly fluorescent DAF-2 triazole (DAF-2T). However, as reported here, the DAF-2 reaction to form a fluorescent product is not specific to NO because it reacts with dehydroascorbic acid (DHA) and ascorbic acid (AA) to generate new compounds that have fluorescence emission profiles similar to that of DAF-2T. When DHA is present, the formation of DAF-2T is attenuated because the DHA competes for DAF-2, whereas AA decreases the nitrosation of DAF-2 to a larger extent, possibly because of additional reducing activity that affects the amount of available N(2)O(3) from the NO. The reaction products of DAF-2 with DHA and AA have been characterized using capillary electrophoresis with laser-induced fluorescence detection and electrospray mass spectrometry. The reactions of DAF-2 with DHA and AA are particularly significant because DHA and AA often colocalize with nitric-oxide synthase in the central nervous, cardiovascular, and immune systems, indicating the importance of understanding this chemistry. 相似文献
40.
Neuropeptides are a complex set of signaling molecules produced through enzymatic cleavages from longer prohormone sequences. The most common cleavage sites in prohormones are basic amino acid residues; however, processing is observed at non-basic sites. Cleavage at Leu-Leu sequences has been observed in three Aplysia californica prohormones. To further investigate this unusual event, native and non-native synthetic peptides containing Leu-Leu residues are incubated with homogenates of Aplysia californica ganglia and the resulting products monitored with MALDI MS. Cleavage near and between Leu-Leu residues is observed in the abdominal and buccal ganglia homogenates, confirming the presence of an unidentified peptidase. In addition, fractions from an HPLC separation of buccal ganglia homogenates also produce cleavages at Leu-Leu residues. Products resulting from cleavage at Leu-Leu sites are observed and are produced in larger amounts in acidic and neutral pH ranges, and cleavage is inhibited by the addition of EDTA, suggesting a metal is required for activity. 相似文献