首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   79篇
  1225篇
  2023年   6篇
  2022年   10篇
  2021年   19篇
  2020年   13篇
  2019年   20篇
  2018年   16篇
  2017年   22篇
  2016年   34篇
  2015年   53篇
  2014年   65篇
  2013年   88篇
  2012年   100篇
  2011年   86篇
  2010年   58篇
  2009年   64篇
  2008年   75篇
  2007年   88篇
  2006年   72篇
  2005年   74篇
  2004年   60篇
  2003年   53篇
  2002年   59篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1971年   3篇
  1969年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有1225条查询结果,搜索用时 15 毫秒
41.
42.
A structural component of mitotic chromosomes that partially explains the compaction of DNA within mitotic chromosomes is suggested on the basis of the occurrence of long, regular cylindrical structures in preparations of isolated human chromosomes. These structures, unit fibers, of a rather constant diameter of about 4,000 Å have been postulated to be formed by coiling of the 250T2–300 Å solenoid chromatin fiber that itself is formed by coiling of the 100 Å string of nucleosome fiber. The human chromatid would thus be composed by a hierarchy of helices with contraction ratios for DNA at each level of coiling of 7 (string of nucleosomes), 5 (solenoid) and 40 (4,000 Å unit fiber or super-solenoid) which results in an overall contraction ratio for DNA in the unit fiber structures of about 1,400, which is approximately 5-fold less than the final contraction of DNA in intact chromatids of condensed metaphase chromosomes. The present report concerns more detailed studies with respect to the dimensions and cytochemical properties of the unit fiber structures observed in preparations of isolated human mitotic chromosomes that provide direct and indirect evidence in support of their super-solenoid structure and relate to known properties of human mitotic chromosomes.  相似文献   
43.
After treatment of sarcoplasmic reticulum Ca(2+)-ATPase with proteinase K (PK) in the presence of Ca(2+) and a protecting non-phosphorylated ligand (e.g. adenosine 5'-(beta,gamma-methylenetriphosphate), we were able to prepare in high yield an ATPase species that only differs from intact ATPase because of excision of the MAATE(243) sequence from the loop linking the A domain with the third transmembrane segment. The PK-treated ATPase was unable to transport Ca(2+) and to catalyze ATP hydrolysis, but it could bind two calcium ions with high affinity and react with ATP to form a classical ADP-sensitive phosphoenzyme, Ca(2)E1P, with occluded Ca(2+). The ability of Ca(2)E1P to become converted to the Ca(2+)-free ADP-insensitive form, E2P, was strongly reduced, as was the ability of PK-treated ATPase to react with orthovanadate or to form an E2P intermediate from inorganic phosphate in the absence of Ca(2+). PK-treated ATPase also reacted with thapsigargin to form a complex with altered properties, and the tryptic cleavage "T2" site in the A domain was no longer protected in the absence of Ca(2+). It is probable that disrupting the C-terminal link of the A domain with the transmembrane region severely compromises reorientation of A and P domains and the functionally critical cross-talk of these domains with the membrane-bound Ca(2+) ions.  相似文献   
44.
The pan‐eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild‐type and Arv1‐deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport‐coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild‐type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C‐terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail‐anchored proteins involved in membrane homoeostasis .  相似文献   
45.
The role of fructose-2,6-bisphosphate (Fru-2,6-P2) in regulation of carbon metabolism was investigated in transgenic potato plants ( Solanum tuberosum L. cv Dianella) transformed with a vector containing a cDNA-sequence encoding fructose-6-phosphate,2-kinase (F6P,2-K, EC 2.7.1.105)/fructose-2,6-bisphosphatase (F26BPase, EC 3.1.3.46) in sense or antisense direction behind a CaMV 35S promoter. The activity of F6P,2-K in leaves was reduced to 5% of wild-type (WT) activity, and the level of Fru-2,6-P2 was reduced both in leaves (10% of the WT level) and in tubers (40% of the WT level). Analysis of photosynthetic 14CO2 metabolism, showed that in plant lines with reduced Fru-2,6-P2 level the carbon partitioning in the leaves was changed in favour of sucrose biosynthesis, and the soluble sugars-to-starch labelling ratio was doubled. The levels of soluble sugars and hexose phosphates also increased in leaves of the transgenic plants. Most notably, the levels of hexoses were four- to six-fold increased in the transgenic plants. In tubers with reduced levels of Fru-2,6-P2 only minor effects on carbohydrate levels were observed. Furthermore, carbon assimilation in tuber discs supplied with [U-14C]-sucrose showed only a moderate increase in labelling of hexoses and a decreased labelling of starch. Similar results were obtained using [U-14C]-glucose. No differences in growth of the transgenic lines and the WT were observed. Our data provide evidences that Fru-2,6-P2 is an important factor in the regulation of photosynthetic carbon metabolism in potato leaves, whereas the direct influence of Fru-2,6-P2 on tuber metabolism was limited.  相似文献   
46.
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the −7 to −4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.  相似文献   
47.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   
48.
49.
New commercially available Human Papillomavirus (HPV) assays need to be evaluated in a variety of cervical screening settings. Cobas HPV Test (cobas) is a real-time PCR-based assay allowing for separate detection of HPV genotypes 16 and 18 and a bulk of 12 other high-risk genotypes. The aim of the present study, Horizon, was to assess the prevalence of high-risk HPV infections in an area with a high background risk of cervical cancer, where women aged 23–65 years are targeted for cervical screening. We collected 6,258 consecutive cervical samples from the largest cervical screening laboratory in Denmark serving the whole of Copenhagen. All samples were stored in SurePath media. In total, 5,072 samples were tested with cobas, Hybrid Capture 2 High Risk HPV DNA test (HC2) and liquid-based cytology. Of these, 27% tested positive on cobas. This proportion decreased by age, being 43% in women aged 23–29 years and 10% in women aged 60–65 years. HC2 assay was positive in 20% of samples, and cytology was abnormal (≥ atypical squamous cells of undetermined significance) for 7% samples. When only samples without recent abnormalities were taken into account, 24% tested positive on cobas, 19% on HC2, and 5% had abnormal cytology. The proportion of positive cobas samples was higher than in the ATHENA trial. The age-standardized cobas positivity vs. cytology abnormality was 3.9 in our study and 1.7 in ATHENA. If in Copenhagen the presently used cytology would be replaced by cobas in women above age 30 years, an extra 11% of women would based on historical data be expected to have a positive cobas test without an underlying cervical intraepithelial lesion grade 3 or worse. Countries with a high prevalence of HPV infections should therefore proceed to primary HPV-based cervical screening with caution.  相似文献   
50.
Recent work suggests that protein fibrillation mechanisms and the structure of the resulting protein fibrils are very sensitive to environmental conditions such as temperature and ionic strength. Here we report the effect of several inorganic salts on the fibrillation of glucagon. At acidic pH, fibrillation is much less influenced by cations than anions, for which the effects follow the electroselectivity series; e.g., the effect of sulfate is approximately 65-fold higher than that of chloride per mole. Increased salt concentrations generally accelerate fibrillation, but result in formation of an alternate type of fibrils. Stability of these fibrils is highly affected by changes in anion concentration; the apparent melting temperature is increased by approximately 22 degrees C for any 10-fold concentration increase, indicating that the fibrils cannot exist without anions. In contrast, fibrillation under alkaline conditions is more affected by cations than anions. We conclude that ions interact directly as structural ligands with glucagon fibrils where they coordinate charges and assist in formation of new fibrils. As ex vivo amyloid plaques often contain large amounts of highly sulfated organic molecules, the specific effects of sulfate ions on glucagon may have general relevance in the study of amyloidosis and other protein deposition diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号