首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   679篇
  免费   24篇
  703篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   26篇
  2020年   13篇
  2019年   16篇
  2018年   20篇
  2017年   27篇
  2016年   28篇
  2015年   33篇
  2014年   55篇
  2013年   46篇
  2012年   70篇
  2011年   60篇
  2010年   30篇
  2009年   36篇
  2008年   40篇
  2007年   34篇
  2006年   26篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   11篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有703条查询结果,搜索用时 15 毫秒
101.
Amaranths are an important group of plants and include grain, vegetable and ornamental types. Despite the economic importance of the amaranths, there is very little information available about the extent and nature of genetic diversity present in the genus Amaranthus at molecular level. We now report the randomly amplified polymorphic DNA (RAPD) profiles of different species of Amaranthus as well as different accessions of the species. These RAPD analyses have been carried out using 65 arbitrary sequence decamer primers. From the RAPD data, an UPGMA dendrogram illustrating the inter-as well as intra-species relationships has been computed. The putative hybrid origin of A.dubious from A. hybridus and A. spinosus is also ruled out by the RAPD data. The trends of species relationships amongst the amaranths determined by RAPDs is consistent with their cytogenetic and evolutionary relationships that have already been determined. NBRI Communication No:464 (N.S.).  相似文献   
102.
This computational study investigates 21 bioactive compounds from the Asteraceae family as potential inhibitors targeting the Spike protein (S protein) of SARS-CoV-2. Employing in silico methods and simulations, particularly CDOCKER and MM-GBSA, the study identifies two standout compounds, pterodontic acid and cichoric acid, demonstrating robust binding affinities (−46.1973 and −39.4265 kcal/mol) against the S protein. Comparative analysis with Favipiravir underscores their potential as promising inhibitors. Remarkably, these bioactives exhibit favorable ADMET properties, suggesting safety and efficacy. Molecular dynamics simulations validate their stability and interactions, signifying their potential as effective SARS-CoV-2 inhibitors.  相似文献   
103.
Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80–85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.  相似文献   
104.
105.
106.
107.
Despite substantial research, the early diagnosis of preeclampsia remains elusive. Lipids are now recognized to be involved in regulation and pathophysiology of some disease. Shotgun lipidomic studies were undertaken to determine whether serum lipid biomarkers exist that predict preeclampsia later in the same in pregnancy. A discovery study was performed using sera collected at 12–14 weeks pregnancy from 27 controls with uncomplicated pregnancies and 29 cases that later developed preeclampsia. Lipids were extracted and analyzed by direct infusion into a TOF mass spectrometer. MS signals, demonstrating apparent differences were selected, their abundances determined, and statistical differences tested. Statistically significant lipid markers were reevaluated in a second confirmatory study having 43 controls and 37 preeclampsia cases. Multi-marker combinations were developed using those lipid biomarkers confirmed in the second study. The initial study detected 45 potential preeclampsia markers. Of these, 23 markers continued to be statistically significant in the second confirmatory set. Most of these markers, representing several lipid classes, were chemically characterized, typically providing lipid class and potential molecular components using MS2. Several multi-marker panels with areas under the curve >0.85 and high predictive values were developed. Developed panels of serum lipidomic biomarkers appear to be able to identify most women at risk for preeclampsia in a given pregnancy at 12–14 weeks gestation.  相似文献   
108.
109.
Spatial variation in the epidemiological patterns of successive waves of pandemic influenza virus in humans has been documented throughout the 20th century but never understood at a molecular level. However, the unprecedented intensity of sampling and whole-genome sequencing of the H1N1/09 pandemic virus now makes such an approach possible. To determine whether the spring and fall waves of the H1N1/09 influenza pandemic were associated with different epidemiological patterns, we undertook a large-scale phylogeographic analysis of viruses sampled from three localities in the United States. Analysis of genomic and epidemiological data reveals distinct spatial heterogeneities associated with the first pandemic wave, March to July 2009, in Houston, TX, Milwaukee, WI, and New York State. In Houston, no specific H1N1/09 viral lineage dominated during the spring of 2009, a period when little epidemiological activity was observed in Texas. In contrast, major pandemic outbreaks occurred at this time in Milwaukee and New York State, each dominated by a different viral lineage and resulting from strong founder effects. During the second pandemic wave, beginning in August 2009, all three U.S. localities were dominated by a single viral lineage, that which had been dominant in New York during wave 1. Hence, during this second phase of the pandemic, extensive viral migration and mixing diffused the spatially defined population structure that had characterized wave 1, amplifying the one viral lineage that had dominated early on in one of the world's largest international travel centers.  相似文献   
110.
Clinical trials using human Mesenchymal Stem Cells (MSCs) have shown promising results in the treatment of various diseases. Different tissue sources, such as bone marrow, adipose tissue, dental pulp and umbilical cord, are being routinely used in regenerative medicine. MSCs are known to reduce increased oxidative stress levels in pathophysiological conditions. Differences in the ability of MSCs from different donors and tissues to ameliorate oxidative damage have not been reported yet. In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reduction abilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocytes were treated with Antimycin A (AMA) to induce oxidative stress and tissue specific MSCs were co-cultured to study the reduction in ROS levels. We found that both donor’s age and source of tissue affected the ability of MSCs to reduce increased ROS levels in damaged cells. In addition, the abilities of same MSCs differed in LX-2 and cardiomyocytes in terms of magnitude of reduction of ROS, suggesting that the type of recipient cells should be kept in consideration when using MSCs in regenerative medicine for treatment purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号