首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1838篇
  免费   107篇
  国内免费   1篇
  2022年   18篇
  2021年   45篇
  2020年   25篇
  2019年   31篇
  2018年   37篇
  2017年   34篇
  2016年   47篇
  2015年   64篇
  2014年   83篇
  2013年   118篇
  2012年   132篇
  2011年   102篇
  2010年   77篇
  2009年   76篇
  2008年   101篇
  2007年   88篇
  2006年   74篇
  2005年   64篇
  2004年   56篇
  2003年   40篇
  2002年   51篇
  2001年   40篇
  2000年   33篇
  1999年   26篇
  1998年   13篇
  1997年   13篇
  1996年   19篇
  1995年   13篇
  1993年   15篇
  1992年   20篇
  1991年   26篇
  1990年   19篇
  1989年   32篇
  1988年   21篇
  1987年   20篇
  1986年   16篇
  1985年   30篇
  1984年   22篇
  1982年   12篇
  1981年   13篇
  1979年   14篇
  1978年   9篇
  1977年   13篇
  1976年   14篇
  1975年   9篇
  1974年   14篇
  1973年   9篇
  1972年   10篇
  1971年   9篇
  1966年   11篇
排序方式: 共有1946条查询结果,搜索用时 15 毫秒
71.
72.

Agrobacterium tumefaciens is a unique pathogen with the ability to transfer a portion of its DNA, the T-DNA, to other organisms. The role of DNA repair genes in Agrobacterium transformation remains controversial. In order to understand if the host DNA repair response and dynamics was specific to bacterial factors such as Vir proteins, T-DNA, and oncogenes, we profiled the expression and promoter methylation of various DNA repair genes. These genes belonged to nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), and non-homologous end joining (NHEJ) pathways. We infected Arabidopsis plants with different Agrobacterium strains that lacked one or more of the above components so that the influence of the respective factors could be analysed. Our results revealed that the expression and promoter methylation of most DNA repair genes was affected by Agrobacterium, and it was specific to Vir proteins, T-DNA, oncogenes, or the mere presence of bacteria. In order to determine if Agrobacterium induced any transgenerational epigenetic effect on the DNA repair gene promoters, we studied the promoter methylation in two subsequent generations of the infected plants. Promoters of at least three genes, CEN2, RAD51, and LIG4 exhibited transgenerational memory in response to different bacterial factors. We believe that this is the first report of Agrobacterium-induced transgenerational epigenetic memory of DNA repair genes in plants. In addition, we show that Agrobacterium induces short-lived DNA strand breaks in Arabidopsis cells, irrespective of the presence or absence of virulence genes and T-DNA.

  相似文献   
73.
Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell’s exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly.  相似文献   
74.
Patel  Yashwant Singh  Reddy  Manoj  Misra  Rajiv 《Cluster computing》2021,24(3):1793-1824
Cluster Computing - Mobile cloud computing augments smart-phones with computation capabilities by offloading computations to the cloud. Recent works only consider the energy savings of mobile...  相似文献   
75.

Auction designs have recently been adopted for static and dynamic resource provisioning in IaaS clouds, such as Microsoft Azure and Amazon EC2. However, the existing mechanisms are mostly restricted to simple auctions, single-objective, offline setting, one-sided interactions either among cloud users or cloud service providers (CSPs), and possible misreports of cloud user’s private information. This paper proposes a more realistic scenario of online auctioning for IaaS clouds, with the unique characteristics of elasticity for time-varying arrival of cloud user requests under the time-based server maintenance in cloud data centers. We propose an online truthful double auction technique for balancing the multi-objective trade-offs between energy, revenue, and performance in IaaS clouds, consisting of a weighted bipartite matching based winning-bid determination algorithm for resource allocation and a Vickrey–Clarke–Groves (VCG) driven algorithm for payment calculation of winning bids. Through rigorous theoretical analysis and extensive trace-driven simulation studies exploiting Google cluster workload traces, we demonstrate that our mechanism significantly improves the performance while promising truthfulness, heterogeneity, economic efficiency, individual rationality, and has a polynomial-time computational complexity.

  相似文献   
76.
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.  相似文献   
77.
This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.  相似文献   
78.
Abstract

Two complementary oligodeoxynucleotide hexamers CATGAA and TTCATG and a pentamer with a fluorescent nucleoside analog viz. 9-N-(2′-deoxy-β-D-ribofuranosyl) carbazole (C*) incorporated into it, TTC*ATG were synthesized and characterised by spectroscopic and chromatographic studies. The comparative fluorescent studies of the two nucleoside analogs viz. 9-N-(2′-deoxy-β-D-ribofuranosyl) acridone and its carbazole analog (C*) have been carried out under different experimental conditions. The effect on fluorescence by incorporation of (C*) into the sequence and its subsequent hybridization with the complementary sequence have been studied.  相似文献   
79.

Background

Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.

Methodology/Principal Findings

We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.

Conclusions/Significance

Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.  相似文献   
80.
Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lep ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号