首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   6篇
  2012年   14篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   6篇
  2002年   4篇
  1999年   1篇
排序方式: 共有131条查询结果,搜索用时 78 毫秒
101.
Echium oil (EO), which is enriched in 18:4 n-3, the immediate product of fatty acid desaturase 2 (FADS2) desaturation of 18:3 n-3, is as atheroprotective as fish oil (FO). The objective of this study was to determine whether botanical oils enriched in the FADS2 products 18:3 n-6 versus 18:4 n-3 are equally atheroprotective. LDL receptor KO mice were fed one of four atherogenic diets containing 0.2% cholesterol and 10% calories as palm oil (PO) plus 10% calories as: 1) PO; 2) borage oil (BO; 18:3 n-6 enriched); 3) EO (18:4 n-3 enriched); or 4) FO for 16 weeks. Mice fed BO, EO, and FO versus PO had significantly lower plasma total and VLDL cholesterol concentrations; hepatic neutral lipid content and inflammation, aortic CE content, aortic root intimal area and macrophage content; and peritoneal macrophage inflammation, CE content, and ex vivo chemotaxis. Atheromas lacked oxidized CEs despite abundant generation of macrophage 12/15 lipooxygenase-derived metabolites. We conclude that botanical oils enriched in 18:3 n-6 and 18:4 n-3 PUFAs beyond the rate-limiting FADS2 enzyme are equally effective in preventing atherosclerosis and hepatosteatosis compared with saturated/monounsaturated fat due to cellular enrichment of ≥20 PUFAs, reduced plasma VLDL, and attenuated macrophage inflammation.  相似文献   
102.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   
103.
The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma.  相似文献   
104.
Intracerebroventricular (ICV) injection of streptozotocin (STZ) causes cognitive impairment in rats. ICV STZ is known to impair cholinergic neurotransmission by decreasing choline acetyltransferase (ChAT) levels, glucose and energy metabolism in brain and synthesis of acetyl CoA. However, no reports are available regarding the cholinesterase inhibitors in this model. In aging brain, reduced energy metabolism increases glutamate release, which is blocked by L-type calcium channel blockers. These calcium channel blockers have shown beneficial effects on learning and memory in various models of cognitive impairment. The present study was designed to investigate the influence of chronic administration of donepezil (cholinesterase inhibitor, 1 and 3 mg/kg) and lercanidipine (L-type calcium channel blocker, 0.3 and 1 mg/kg) on cognitive impairment in male Sprague-Dawley rats injected twice with ICV STZ (3 mg/kg) bilaterally on days 1 and 3. ICV STZ injected rats developed a severe deficit in learning and memory indicated by deficits in passive avoidance paradigm and elevated plus maze as compared to control rats. Cholinesterase activity in brain was significantly increased in ICV STZ injected rats. Donepezil dose-dependently inhibited cholinesterase activity and improved performance in memory tests at both the doses. Lercanidipine (0.3 mg/kg) showed significant improvement in memory. When administered together, the effect of combination of these two drugs on memory and cholinesterase activity was higher than that obtained with either of the drugs when used alone.  相似文献   
105.
Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g′). This article is focused on the factors affecting determination of T g′ for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g′. Although various analytical techniques are used for determination of T g′ based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g′ determination. Additionally, challenges associated with T g′ determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g′ for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g′), in general, is outside the scope of this work.  相似文献   
106.
For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors.  相似文献   
107.
Fungal morphology in many filamentous fungal fermentations leads to high broth viscosity which limits oxygen mass transfer, and often results in reduced productivity. The objective in this study was to determine if a simple, fed-batch, process strategy-pulsed addition of limiting-carbon source-could be used to reduce fungal broth viscosity, and increase productivity of an industrially relevant recombinant enzyme (glucoamylase). As a control, three Aspergillus oryzae fed-batch fermentations were carried out with continuous addition of limiting-carbon. To determine the effect of pulse-feeding, three additional fermentations were carried out with limiting-carbon added in 90-second pulses, during repeated five-minute cycles. In both cases, overall carbon feed-rate was used to control dissolved oxygen concentration, such that increased oxygen availability led to increased addition of limiting-carbon. Pulse-fed fermentations were found to have smaller fungal mycelia, lower broth viscosity, and improved oxygen mass transfer. As a result, more carbon was added to pulse-fed fermentations that led to increased enzyme productivity by as much as 75%. This finding has significant implications for the bioprocessing industry, as a simple process modification which is likely to cost very little to implement in most production facilities, has the potential to substantially increase productivity.  相似文献   
108.
Tilapia ( Oreochromis mossambicus ) is one of the most invasive fish found throughout the World and emerged as a major threat to the indigenous fishes in many countries. Investigating the gut microbial diversity of such fishes is one of the ways to understand its physiology. In the present study, we have explored the gut microbial community structure of tilapia using 16S rRNA gene sequencing on the Illumina Miseq platform. Our study showed significant differences in tilapia gut microbiota collected from different habitats (i.e. river and lakes) suggesting the influence of habitat on the gut microbial diversity of tilapia. This study gives a first insight into the mossambicus tilapia gut microbiota and provides a reference for future studies.  相似文献   
109.
Yosef  Reuven  Dabi  Hemant  Kumbhojkar  Swapnil 《Acta ethologica》2021,24(2):141-141
acta ethologica - A correction to this paper has been published: https://doi.org/10.1007/s10211-021-00367-w  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号