首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   14篇
  181篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   3篇
  2015年   16篇
  2014年   9篇
  2013年   10篇
  2012年   29篇
  2011年   14篇
  2010年   13篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有181条查询结果,搜索用时 0 毫秒
61.
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.  相似文献   
62.
Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits.  相似文献   
63.
To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.  相似文献   
64.

Background

Strongyloides stercoralis, an intestinal parasitic nematode, infects more than 100 million people worldwide. Strongyloides are unique in their ability to exist as a free-living and autoinfective cycle. Strongyloidiasis can occur without any symptoms or as a potentially fatal hyperinfection or disseminated infection. The most common risk factors for these complications are immunosuppression caused by corticosteroids and infection with human T-lymphotropic virus or human immunodeficiency virus. Even though the diagnosis of strongyloidiasis is improved by advanced instrumentation techniques in isolated and complicated cases of hyperinfection or dissemination, efficient guidelines for screening the population in epidemiological surveys are lacking.

Methodology and Results

In this review, we have discussed various conventional methods for the diagnosis and management of this disease, with an emphasis on recently developed molecular and serological methods that could be implemented to establish guidelines for precise diagnosis of infection in patients and screening in epidemiological surveys. A comprehensive analysis of various cases reported worldwide from different endemic and nonendemic foci of the disease for the last 40 years was evaluated in an effort to delineate the global prevalence of this disease. We also updated the current knowledge of the various clinical spectrum of this parasitic disease, with an emphasis on newer molecular diagnostic methods, treatment, and management of cases in immunosuppressed patients.

Conclusion

Strongyloidiasis is considered a neglected tropical disease and is probably an underdiagnosed parasitic disease due to its low parasitic load and uncertain clinical symptoms. Increased infectivity rates in many developed countries and nonendemic regions nearing those in the most prevalent endemic regions of this parasite and the increasing transmission potential to immigrants, travelers, and immunosuppressed populations are indications for initiating an integrated approach towards prompt diagnosis and control of this parasitic disease.  相似文献   
65.
Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family.  相似文献   
66.
T11 target structure (T11TS), a membrane glycoprotein has been documented with antineoplastic activity in animal model in our lab. Previously, in animal study we have documented T11TS induced cytotoxic abrogation of tumor cells. Encouraged by these established findings by our group and as prerequisite for clinical trial, this study has been designed to assess the cytotoxic potential of the patient's lymphocytes in in vitro study of autologous human glioma as modulated by T11TS. Meningioma samples were chosen as disease control group. The data produced indicates T11TS induced up regulation of cytotoxicity of T lymphocytes in grade I and II glioma. Significant enhancement of cytotoxic protein, perforin and granzyme suggest cytotoxic death of T11TS induced target tumor. Also, T11TS downregulates the TGF-β secretion in grade I and II tumor cells. These preliminary findings may help in pushing this molecule into pharmaceutical domain.  相似文献   
67.
The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.  相似文献   
68.
Spastin, a member of the ATPases associated with various cellular activities (AAA) family of proteins, is the most frequently mutated in hereditary spastic paraplegia. The defining feature of the AAA proteins is a structurally conserved AAA domain which assembles into an oligomer. By chemical cross-linking and gel filtration chromatography, we show that spastin oligomerizes into a hexamer. Furthermore, to gain a comprehensive overview of the oligomeric structure of spastin, we generated a structural model of the AAA domain of spastin using template structure of VPS4B and p97/VCP. The generated model of spastin provided us with a framework to classify the identified missense mutations in the AAA domain from hereditary spastic paraplegia patients into different structural/functional groups. Finally, through co-localization studies in mammalian cells, we show that E442Q mutant spastin acts in a dominant negative fashion and causes redistribution of both wild-type spastin monomer and spastin interacting protein, RTN1 into filamentous microtubule bundles.  相似文献   
69.
Roots of plantlets of Garcinia indica when cultured for long time on half strength MS medium supplemented with BAP (0.44-2.22 microM) showed production of de novo shoots. Roots attached to mother plant showed more number of shoots, while excised root segments produced lesser shoots. Shoots (0.5-0.8 cm) were transferred to elongation medium consisting of Woody Plant Medium (WPM) supplemented with BAP (4.44-22.69 microM), IAA (5.71 microM) and kinetin (4.65 microM). It was observed that shoot length increased to 1-2 cm. WPM medium supplemented with NAA (2.69-10.74 microM) and IBA (4.90 microM) induced rooting within 20-25 days. Using the present protocol, 20-25 plantlets could be regenerated from single root explant within 3 to 4 months. The protocol has potential for large scale production of elite plants.  相似文献   
70.
Lipids are an essential structural and functional component of cellular membranes. Changes in membrane lipid composition are known to affect the activities of many membrane-associated enzymes, endocytosis, exocytosis, membrane fusion and neurotransmitter uptake, and have been implicated in the pathophysiology of many neurodegenerative disorders. In the present study, we investigated changes in the lipid composition of membranes isolated from the cerebral cortex of rats treated with thioacetamide (TAA), a hepatotoxin that induces fulminant hepatic failure (FHF) and thereon hepatic encephalopathy (HE). HE refers to acute neuropsychiatric changes accompanying FHF. The estimation of membrane phospholipids, cholesterol and fatty acid content in cerebral cortex membranes from TAA-treated rats revealed a decrease in cholesterol, phosphatidylserine, sphingomyelin, a monounsaturated fatty acid, namely oleic acid, and the polyunsaturated fatty acids gamma-linolenic acid, decosa hexanoic acid and arachidonic acid compared with controls. Assessment of membrane fluidity with pyrene, 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene revealed a decrease in the annular membrane fluidity, whereas the global fluidity was unaffected. The level of the thiobarbituric acid reactive species marker for lipid peroxidation also increased in membranes from TAA-treated rats, thereby indicating the prevalence of oxidative stress. Results from the present study demonstrate gross alterations in cerebral cortical membrane lipid composition and fluidity during TAA-induced HE, and their possible implications in the pathogenesis of this condition are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号