首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   14篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   3篇
  2015年   16篇
  2014年   9篇
  2013年   10篇
  2012年   29篇
  2011年   14篇
  2010年   13篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1988年   1篇
  1982年   2篇
排序方式: 共有180条查询结果,搜索用时 31 毫秒
51.
Proline peptide group isomerization can result in kinetic barriers in protein folding. In particular, the cis proline peptide conformation at Tyr92-Pro93 of bovine pancreatic ribonuclease A (RNase A) has been proposed to be crucial for chain folding initiation. Mutation of this proline-93 to alanine results in an RNase A molecule, P93A, that exhibits unfolding/refolding kinetics consistent with a cis Tyr92-Ala93 peptide group conformation in the folded structure (Dodge RW, Scheraga HA, 1996, Biochemistry 35:1548-1559). Here, we describe the analysis of backbone proton resonance assignments for P93A together with nuclear Overhauser effect data that provide spectroscopic evidence for a type VI beta-bend conformation with a cis Tyr92-Ala93 peptide group in the folded structure. This is in contrast to the reported X-ray crystal structure of [Pro93Gly]-RNase A (Schultz LW, Hargraves SR, Klink TA, Raines RT, 1998, Protein Sci 7:1620-1625), in which Tyr92-Gly93 forms a type-II beta-bend with a trans peptide group conformation. While a glycine residue at position 93 accommodates a type-II bend (with a positive value of phi93), RNase A molecules with either proline or alanine residues at this position appear to require a cis peptide group with a type-VI beta-bend for proper folding. These results support the view that a cis Pro93 conformation is crucial for proper folding of wild-type RNase A.  相似文献   
52.
53.
Cyclooxygenase (Cox) is a key enzyme in the biosynthetic metabolism of prostaglandins. The inducible isoform of Cox-2 has been implicated in inflammation and its specific inhibition can be used to treat noninfectious inflammatory diseases, such as rheumatoid arthritis. Borrelia burgdorferi, the agent of Lyme disease, can induce joint inflammation. Here we show that B. burgdorferi induced the upregulation of cox-2 gene expression in murine joints at the onset of arthritis in infected mice. The level of mRNA expression correlated with the degree of inflammation. The specific inhibition of Cox-2 diminished the degree of joint inflammation, without affecting B. burgdorferi-specific antibody or cytokine responses. Cox-2 activity is therefore associated with the genesis of infectious arthritis caused by B. burgdorferi.  相似文献   
54.
55.

Antimicrobial peptides (AMPs) are an important element of the innate immune system of all living organisms and serve as a barrier that safeguards the organisms against a wide range of pathogens. Fishes are proven to be a prospective source of AMPs, and β-defensins form an important family of AMPs with potent antimicrobial, chemotactic and immunomodulatory activities. The present study reports a β-defensin AMP sequence (Lc-BD) from the Asian sea bass, Lates calcarifer, a commercially important fish species in tropical and subtropical regions of Asia and the Pacific. A 202-bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) was obtained from the mRNA of gill tissue by RT-PCR. The deduced aa sequence of Lc-BD possessed a signal and a mature peptide region with 20 and 43 aa residues, respectively. Lc-BD was characterized at the molecular level, and a molecular weight of 5.24 kDa and a net charge of +4.5 was predicted for the mature peptide. The molecular characterization of Lc-BD revealed the presence of three intramolecular disulphide bonds involving the six conserved cysteine residues in the sequence, and the phylogenetic analysis of Lc-BD showed a close relationship with β-defensins from fishes like Siniperca chuatsi, Argyrosomus regius, Trachinotus ovatus and Oplegnathus fasciatus.

  相似文献   
56.
The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0_UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural Genomics Consortium, as part of the Protein Structure Initiative's program on structure-function analysis of protein domains from large domain sequence families lacking structural representatives. The 100-residue Lipoprotein-17 domain is a "domain of unknown function" (DUF) that is a member of Pfam protein family PF04200, a large domain family for which no members have characterized biochemical functions. The three-dimensional structure of the Lipoprotein-17 domain of protein Q9PRA0_UREPA was determined by both solution NMR and by X-ray crystallography at 2.5 ?. The two structures are in good agreement with each other. The domain structure features three α-helices, α1 through α3, and five β-strands. Strands β1/β2, β3/β4, β4/β5 are anti-parallel to each other. Strands β1and β2 are orthogonal to strands β3, β4, β5, while helix α3 is formed between the strands β3 and β4. One-turn helix α2 is formed between the strands β1 and β2, while helix α1 occurs in the N-terminal polypeptide segment. Searches of the Protein Data Bank do not identify any other protein with significant structural similarity to Lipoprotein-17 domain of Q9PRA0_UREPA, indicating that it is a novel protein fold.  相似文献   
57.
Transcriptomics of the bed bug (Cimex lectularius)   总被引:1,自引:0,他引:1  
  相似文献   
58.
59.
BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5′ partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in‐frame to six N‐terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAFV600E mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.  相似文献   
60.
Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号