首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   181篇
  2021年   11篇
  2019年   12篇
  2017年   12篇
  2016年   19篇
  2015年   42篇
  2014年   44篇
  2013年   62篇
  2012年   70篇
  2011年   70篇
  2010年   47篇
  2009年   47篇
  2008年   46篇
  2007年   64篇
  2006年   69篇
  2005年   47篇
  2004年   56篇
  2003年   38篇
  2002年   54篇
  2001年   45篇
  2000年   46篇
  1999年   47篇
  1998年   22篇
  1997年   10篇
  1996年   21篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   26篇
  1989年   20篇
  1988年   31篇
  1987年   25篇
  1986年   14篇
  1985年   15篇
  1984年   16篇
  1983年   18篇
  1982年   15篇
  1981年   13篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   13篇
  1976年   12篇
  1975年   13篇
  1974年   14篇
  1973年   12篇
  1972年   10篇
  1971年   11篇
  1969年   10篇
  1968年   10篇
  1966年   11篇
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
81.
We report on a novel transgenic mouse model expressing human full‐length Tau with the Tau mutation A152T (hTauAT), a risk factor for FTD‐spectrum disorders including PSP and CBD. Brain neurons reveal pathological Tau conformation, hyperphosphorylation, mis‐sorting, aggregation, neuronal degeneration, and progressive loss, most prominently in area CA3 of the hippocampus. The mossy fiber pathway shows enhanced basal synaptic transmission without changes in short‐ or long‐term plasticity. In organotypic hippocampal slices, extracellular glutamate increases early above control levels, followed by a rise in neurotoxicity. These changes are normalized by inhibiting neurotransmitter release or by blocking voltage‐gated sodium channels. CA3 neurons show elevated intracellular calcium during rest and after activity induction which is sensitive to NR2B antagonizing drugs, demonstrating a pivotal role of extrasynaptic NMDA receptors. Slices show pronounced epileptiform activity and axonal sprouting of mossy fibers. Excitotoxic neuronal death is ameliorated by ceftriaxone, which stimulates astrocytic glutamate uptake via the transporter EAAT2/GLT1. In summary, hTauAT causes excitotoxicity mediated by NR2B‐containing NMDA receptors due to enhanced extracellular glutamate.  相似文献   
82.
Human Dual-specificity tyrosine (Y) Regulated Kinase 1A (DYRK1A) is encoded by a dosage dependent gene whereby either trisomy or haploinsufficiency result in developmental abnormalities. However, the function and regulation of this important protein kinase are not fully understood. Here, we report proteomic analysis of DYRK1A in human cells that revealed a novel role of DYRK1A in DNA double-strand breaks (DSBs) repair, mediated in part by its interaction with the ubiquitin-binding protein RNF169 that accumulates at the DSB sites and promotes homologous recombination repair (HRR) by displacing 53BP1, a key mediator of non-homologous end joining (NHEJ). We found that overexpression of active, but not the kinase inactive DYRK1A in U-2 OS cells inhibits accumulation of 53BP1 at the DSB sites in the RNF169-dependent manner. DYRK1A phosphorylates RNF169 at two sites that influence its ability to displace 53BP1 from the DSBs. Although DYRK1A is not required for the recruitment of RNF169 to the DSB sites and 53BP1 displacement, inhibition of DYRK1A or mutation of the DYRK1A phosphorylation sites in RNF169 decreases its ability to block accumulation of 53BP1 at the DSB sites. Interestingly, CRISPR-Cas9 knockout of DYRK1A in human and mouse cells also diminished the 53BP1 DSB recruitment in a manner that did not require RNF169, suggesting that dosage of DYRK1A can influence the DNA repair processes through both RNF169-dependent and independent mechanisms. Human U-2 OS cells devoid of DYRK1A display an increased HRR efficiency and resistance to DNA damage, therefore our findings implicate DYRK1A in the DNA repair processes.  相似文献   
83.
Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2 (~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2 from fossil fuels across the region.  相似文献   
84.
Spiders and their silk are an excellent system for connecting the properties of biological materials to organismal ecology. Orb-weaving spiders spin sticky capture threads that are moderately strong but exceptionally extensible, resulting in fibers that can absorb remarkable amounts of energy. These tough fibers are thought to be adapted for arresting flying insects. Using tensile testing, we ask whether patterns can be discerned in the evolution of silk material properties and the ecological uses of spider capture fibers. Here, we present a large comparative data set that allows examination of capture silk properties across orb-weaving spider species. We find that material properties vary greatly across species. Notably, extensibility, strength, and toughness all vary approximately sixfold across species. These material differences, along with variation in fiber size, dictate that the mechanical performance of capture threads, the energy and force required to break fibers, varies by more than an order of magnitude across species. Furthermore, some material and mechanical properties are evolutionarily correlated. For example, species that spin small diameter fibers tend to have tougher silk, suggesting compensation to maintain breaking energy. There is also a negative correlation between strength and extensibility across species, indicating a potential evolutionary trade-off. The different properties of these capture silks should lead to differences in the performance of orb webs during prey capture and help to define feeding niches in spiders.  相似文献   
85.
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.  相似文献   
86.
87.
The control of Spodoptera frugiperda is based on synthetic insecticides, so some alternatives are the use of entomopathogenic fungi (EF) and neem extract. The objective of the study was to evaluate in vitro effectiveness of native EF and neem extracts on S. frugiperda larvae. Six EF were identified by DNA sequencing of ITS regions from three EF (Fusarium solani, Metarrhizium robertsii, Nigrospora spherica and Penicillium citrinum). They were evaluated in concentrations of 1 × 10⁸ spores/ mL. In addition, a second bioassay was carried out evaluating only F. solani, M. robertsii and N. sphaerica and the addition of vegetable oil. On the other hand, extraction of secondary metabolites from neem seed (Azadirachta indica) was carried out by performing, mass (g) and solvent volume (mL ethanol and water) combinations, which were subjected to microwaves and ultrasound. Subsequently, these extracts were evaluated in concentrations of 3%, 4% and 5%. A survival analysis was performed for each of the bioassays. With respect to the results of the first bioassay, F. solani obtained a probability of survival of 0.476 on the seventh day, while in the second bioassay, M. robertsii obtained 0.488 survival probability. This suggests that the expected percentage of larvae that stay alive on the sixth day is 48.8%. However, in the evaluation of the neem extract the combination 1:12/70% to 4% caused 84% mortality of larvae. The use of native HE and neem extracts has potential for the control of S. frugiperda.  相似文献   
88.
Journal of Comparative Physiology B - Small birds in cold climates may show within-winter metabolic flexibility to match metabolic capacities to prevailing weather conditions. This flexibility may...  相似文献   
89.
Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre‐defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface‐complementing fragments or “seeds.” We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM‐based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide‐protein complexes can be covered by seeds generated from single‐chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide‐covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher‐quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide‐binding site. These results demonstrate that known peptide‐binding structures can be constructed from TERMs in single‐chain structures and suggest that TERM information can be applied to efficiently design novel target‐complementing binders.  相似文献   
90.
Serpin family protein proteinase inhibitors trap proteinases at the acyl-intermediate stage of cleavage of the serpin as a proteinase substrate by undergoing a dramatic conformational change, which is thought to distort the proteinase active site and slow deacylation. To investigate the extent to which proteinase catalytic function is defective in the serpin-proteinase complex, we compared the pH dependence of dissociation of several serpin-proteinase acyl-complexes with that of normal guanidinobenzoyl-proteinase acyl-intermediate complexes. Whereas the apparent rate constant for dissociation of guanidinobenzoyl-proteinase complexes (k(diss, app)) showed a pH dependence characteristic of His-57 catalysis of complex deacylation, the pH dependence of k(diss, app) for the serpin-proteinase complexes showed no evidence for His-57 involvement in complex deacylation and was instead characteristic of a hydroxide-mediated deacylation similar to that observed for the hydrolysis of tosylarginine methyl ester. Hydroxylamine enhanced the rate of serpin-proteinase complex dissociation but with a rate constant for nucleophilic attack on the acyl bond several orders of magnitude slower than that of hydroxide, implying limited accessibility of the acyl bond in the complex. The addition of 10-100 mm Ca(2+) ions stimulated up to 80-fold the dissociation rate constant of several serpin-trypsin complexes in a saturable manner at neutral pH and altered the pH dependence to a pattern characteristic of His-57-catalyzed complex deacylation. These results support a mechanism of kinetic stabilization of serpin-proteinase complexes wherein the complex is trapped as an acyl-intermediate by a serpin conformational change-induced inactivation of the proteinase catalytic function, but suggest that the inactive proteinase conformation in the complex is in equilibrium with an active proteinase conformation that can be stabilized by the preferential binding of an allosteric ligand such as Ca(2+).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号