首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   181篇
  2021年   11篇
  2019年   12篇
  2017年   12篇
  2016年   19篇
  2015年   42篇
  2014年   44篇
  2013年   62篇
  2012年   70篇
  2011年   70篇
  2010年   47篇
  2009年   47篇
  2008年   46篇
  2007年   64篇
  2006年   69篇
  2005年   47篇
  2004年   56篇
  2003年   38篇
  2002年   54篇
  2001年   45篇
  2000年   46篇
  1999年   47篇
  1998年   22篇
  1997年   10篇
  1996年   21篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   26篇
  1989年   20篇
  1988年   31篇
  1987年   25篇
  1986年   14篇
  1985年   15篇
  1984年   16篇
  1983年   18篇
  1982年   15篇
  1981年   13篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   13篇
  1976年   12篇
  1975年   13篇
  1974年   14篇
  1973年   12篇
  1972年   10篇
  1971年   11篇
  1969年   10篇
  1968年   10篇
  1966年   11篇
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
61.
Bean plants, trimmed to a simplified “double source, double sink” translocation system (the paired primary leaves serving as the double source and the paired lateral leaflets of the immature first trifoliate leaf as the double sink) were used to study the magnitude and short-term time course of change in the allocation ratio (partition ratio) of assimilates translocated from the labeled primary leaf to its respective “near” and “far leaflet” sinks in response to an increase or decrease in the source strength of the opposite primary leaf (the “control” leaf). If the rates of net photosynthesis in the two primary leaves were similar, assimilates from the labeled source leaf partitioned to the leaflet sinks in the ratio of 5:1 or higher, the dominant sink being the leaflet “nearer” to the labeled source leaf. If the rate of net photosynthesis in the control leaf was increased substantially above that of the labeled source leaf, the rate of translocation from the labeled source to either the near leaflet sink or far leaflet sink remained unaffected, despite, presumably, a higher translocation rate from the control leaf, and hence a higher phloem pressure gradient (or increased cross-sectional area) in the transport pathway from the control leaf to the leaflet sinks. If the control leaf was excised, thus reducing the source leaf area by about a half, the translocation rate from the remaining source leaf rapidly doubled, the partition ratio becoming equal to unity. If the control leaf was darkened, the partition ratio adjusted to an intermediate value. Although export rates from the labeled source leaf were increased either by excising or darkening the control leaf, the rate of net photosynthesis in the labeled leaf remained constant.  相似文献   
62.
The sex-linked temperature-sensitive mutation shibirets of Drosophila melanogaster shows a maternal effect causing embryonic lethality at 29°C. The maternal influence is due to gene action autonomous to the ovary. Embryos carrying the paternally derived wild-type gene can survive at 29°C but only if heat pulses are begun at least 9 hr after oviposition. The paternal rescue is presumably due to zygotic gene action at this locus beginning part way through embryogenesis. A maternal wild-type genome, however, can produce shi embryos that have sufficient shi+ product to support embryogenesis up to the hatching stage even at 29°C.  相似文献   
63.
64.
65.
66.
67.
A micromethod for the quantitative analysis of caffeine present in small quantities (100 μl) of whole blood is described. It is based on the gas chromatographic—mass spectrometric analysis of chloroform extracts of biological samples. The method is relatively simple, rapid, specific and sensitive, as little as 20 ng of caffeine can be measured.  相似文献   
68.
Hexazonium pararosaniline is a valuable reagent that has been used in enzyme activity histochemistry for 50 years. It is an aqueous solution containing the tris-diazonium ion derived from pararosaniline, an aminotriarylmethane dye, and it contains an excess of nitrous acid that was not consumed in the diazotization reaction. Other investigators have found that immersion for 2 min in an acidic (pH 3.5) 0.0015 M hexazonium pararosaniline solution can protect cryostat sections of unfixed animal tissues from the deleterious effects of aqueous reagents such as buffered solutions used in immunohistochemistry, while preserving specific affinities for antibodies. In the present investigation hexazonium pararosaniline protected lymphoid tissue and striated muscle against the damaging effects of water or saline. The same protection was conferred on unfixed sections treated with dilute nitrous or hydrochloric acid in concentrations similar to those in hexazonium pararosaniline solutions. Model tissues (solutions, gels or films containing gelatin and/or bovine albumin) responded predictably to well known cross-linking (formaldehyde) or coagulant (mercuric chloride) fixatives. Hexazonium pararosaniline solutions prevented the dissolution of protein gels in water only after 9 or more days of contact, during which time considerable swelling occurred. It is concluded that there is no evidence for a “fixative” action of hexazonium pararosaniline. The protective effect on frozen sections of unfixed tissue is attributable probably to the low pH of the solution.  相似文献   
69.

Purpose

To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and compare them to the standard-of-care protocol.

Methods and Materials

We integrated a patient-specific biomathematical model of glioma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to construct individualized, biologically-guided plans for 11 glioblastoma patients. Patient-individualized, spherically-symmetric simulations of the standard-of-care and optimized plans were compared in terms of several biological metrics.

Results

The integrated model generated spatially non-uniform doses that, when compared to the standard-of-care protocol, resulted in a 67% to 93% decrease in equivalent uniform dose to normal tissue, while the therapeutic ratio, the ratio of tumor equivalent uniform dose to that of normal tissue, increased between 50% to 265%. Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized plans would have a significant impact on delaying tumor progression, with increases from 21% to 105% for 9 of 11 patients.

Conclusions

Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for radiation therapy generated biologically-guided doses that decreased normal tissue EUD and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号