首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   181篇
  2021年   11篇
  2019年   12篇
  2017年   12篇
  2016年   19篇
  2015年   42篇
  2014年   44篇
  2013年   62篇
  2012年   70篇
  2011年   70篇
  2010年   47篇
  2009年   47篇
  2008年   46篇
  2007年   64篇
  2006年   69篇
  2005年   47篇
  2004年   56篇
  2003年   38篇
  2002年   54篇
  2001年   45篇
  2000年   46篇
  1999年   47篇
  1998年   22篇
  1997年   10篇
  1996年   21篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   26篇
  1989年   20篇
  1988年   31篇
  1987年   25篇
  1986年   14篇
  1985年   15篇
  1984年   16篇
  1983年   18篇
  1982年   15篇
  1981年   13篇
  1980年   15篇
  1979年   12篇
  1978年   14篇
  1977年   13篇
  1976年   12篇
  1975年   13篇
  1974年   14篇
  1973年   12篇
  1972年   10篇
  1971年   11篇
  1969年   10篇
  1968年   10篇
  1966年   11篇
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
131.
The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function.  相似文献   
132.
Pluripotent cells of the blastocyst inner cell mass (ICM) and their in vitro derivatives, embryonic stem (ES) cells, contain genomes in an epigenetic state that are poised for subsequent differentiation. Their chromatin is hyperdynamic in nature and relatively uncondensed. In addition, a large number of genes are expressed at low levels in both ICM and ES cells. Also, the chromatin of naturally pluripotent cells contains specialized histone modification patterns such as bivalent domains, which mark genes destined for later developmentally-regulated expression states. Female pluripotent cells contain X chromosomes that have yet to undergo the process of X chromosome inactivation. Collectively, these features of very early embyronic chromatin are required for the successful specification and production of differentiated cell lineages. Artificial reprogramming methods such as somatic nuclear transfer (SCNT), ES cell fusion-mediated reprogramming (FMR), and induced pluripotency (iPS) yield pluripotent cells that recapitulate many features of naturally pluripotent cells, including many of their epigenetic features. However, the route to pluripotent epigenomic states in artificial pluripotent cells differs drastically from that of their natural counterparts. Here, we compare and contrast the differing routes to pluripotency under natural and artificial conditions. In addition, we discuss the intrinsically metastable nature of the pluripotent epigenome and consider epigenetic aspects of reprogramming that may lead to incomplete or inaccurate reprogrammed states. Artificial methods of reprogramming hold immense promise for the development of autologous cell graft sources and for the development of cell culture models for human genetic disorders. However, the utility of artificially reprogrammed cells is highly dependent on the fidelity of the reprogramming process and it is therefore critically important to assess the epigenetic similarities between embryonic and induced pluripotent stem cells.  相似文献   
133.
Fcγ Receptor (FcR)-mediated phagocytosis by macrophages requires phosphatidylinositol 3-kinase (PI3K) and activation of the Rho-family GTPases Cdc42 and Rac1. Cdc42 is activated at the advancing edge of the phagocytic cup, where actin is concentrated, and is deactivated at the base of the cup. The timing of 3′ phosphoinositide (3′PI) concentration changes in cup membranes suggests a role for 3′PIs in deactivation of Cdc42. This study examined the relationships between PI3K and the patterns of Rho-family GTPase signaling during phagosome formation. Inhibition of PI3K resulted in persistently active Cdc42 and Rac1, but not Rac2, in stalled phagocytic cups. Patterns of 3′PIs and Rho-family GTPase activities during phagocytosis of 5- and 2-μm-diameter microspheres indicated similar underlying mechanisms despite particle size–dependent sensitivities to PI3K inhibition. Expression of constitutively active Cdc42(G12V) increased 3′PI concentrations in plasma membranes and small phagosomes, indicating a role for Cdc42 in PI3K activation. Cdc42(G12V) inhibited phagocytosis at a later stage than inhibition by dominant negative Cdc42(N17). Together, these studies identified a Cdc42 activation cycle organized by PI3K, in which FcR-activated Cdc42 stimulates PI3K and actin polymerization, and the subsequent increase of 3′PIs in cup membranes inactivates Cdc42 to allow actin recycling necessary for phagosome formation.  相似文献   
134.
Utilization of a tetrahydro-pyrimdoazepine core as a bioisosteric replacement for a piperazine-urea resulted in the discovery a novel series of potent antagonists of TRPV1. The tetrahydro-pyrimdoazepines have been identified as having good in vitro and in vivo potency and acceptable physical properties.  相似文献   
135.
Many effective anti-cancer strategies target apoptosis and angiogenesis mechanisms. Applications of non-ionizing, nanosecond pulsed electric fields (nsPEFs) induce apoptosis in vitro and eliminate cancer in vivo; however in vivo mechanisms require closer analysis. These studies investigate nsPEF-induced apoptosis and anti-angiogenesis examined by fluorescent microscopy, immunoblots, and morphology. Six hours after treatment with one hundred 300 ns pulses at 40 kV/cm, cells transiently expressed active caspases indicating that caspase-mediated mechanisms. Three hours after treatment transient peaks in Histone 2AX phosphorylation coincided with terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells and pyknotic nuclei, suggesting caspase-independent mechanisms on nuclei/DNA. Large DNA fragments, but not 180 bp fragmentation ladders, were observed, suggesting incomplete apoptosis. Nevertheless, tumor weight and volume decreased and tumors disappeared. One week after treatment, vessel numbers, vascular endothelial growth factor (VEGF), platelet derived endothelial cell growth factor (PD-ECGF), CD31, CD35 and CD105 were decreased, indicating anti-angiogenesis. The nsPEFs activate multiple melanoma therapeutic targets, which is consistent with successes of nsPEF applications for tumor treatment in vivo as a new cancer therapeutic modality.  相似文献   
136.

Introduction  

Intraarticular administration of autologous conditioned serum (ACS) recently demonstrated some clinical effectiveness in treatment of osteoarthritis (OA). The current study aims to evaluate the in vitro effects of ACS on cartilage proteoglycan (PG) metabolism, its composition and the effects on synovial fluid (SF) cytokine levels following intraarticular ACS administration.  相似文献   
137.
138.
A method is described for the isolation of protoplasts from rapidly-growing, friable embryogenic and organogenic cell cultures of corn. A Sepharose 6MB cyanogen-bromide-activated macrobead column coupled with Cellulase RS was used to separate contaminating cells from protoplasts. The column consists of layering 1.5 cm of the coupled-macrobeads into a 2.2-cm diameter column. Contamination of protoplasts by cells possessing partial or complete walls was reduced from 25% to near zero after a single passage through the column. The column was capable of retaining in excess of 30 million cells and recovering 99% cell-free preparations from culture material consisting of less than 1% protoplasts. Coupled-macrobeads were easily recovered, washed free of cells and stored for repeated use. Corn protoplasts appeared undamaged by the column and rapeseed (Brassica napus) protoplasts which were passed through the column have divided and formed colonies in culture. Uncoupled macrobeads were not as efficient as coupled macrobeads in reducing cellular contamination.  相似文献   
139.
A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E, rBoNTE(H(c)) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(H(c)) gene inserted into pHILD4 Escherichia coli-P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy number, and BoNTE(H(c)) sequence. Expression of rBoNTE(H(c)) from the Mut(+) HIS4 clone was confirmed in the shake-flask, prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(H(c)). Specific growth rate, ratio of growth to induction phase, and time of induction were critical for optimal rBoNTE(H(c)) production and minimal proteolytic degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(H(c)) per gram wet cell mass as determined by HPLC and Western blot analysis.  相似文献   
140.
Much evidence suggests that astrocytes protect neurons against ischemic injury. Although astrocytes are more resistant to some insults than neurons, few studies offer insight into the real time changes of astrocytic protective functions with stress. Mitochondria are one of the primary targets of ischemic injury in astrocytes. We investigated the time course of changes in astrocytic ATP levels, plasma membrane potential, and glutamate uptake, a key protective function, induced by mitochondrial inhibition. Our results show that significant functional change precedes reduction in astrocytic viability with mitochondrial inhibition. Using the mitochondrial inhibitor fluorocitrate (FC, 0.25 mmol/L) that is preferentially taken by astrocytes we found that inhibition of astrocyte mitochondria increased vulnerability of co-cultured neurons to glutamate toxicity. In our studies, the rates of FC-induced astrocytic mitochondrial depolarization were accelerated in mixed astrocyte/neuron cultures. We hypothesized that the more rapid mitochondrial depolarization was promoted by an additional energetic demand imposed be the co-cultured neurons. To test this hypothesis, we exposed pure astrocytic cultures to 0.01-1 mmol/L aspartate as a metabolic load. Aspartate application accelerated the rates of FC-induced mitochondrial depolarization, and, at 1 mmol/L, induced astrocytic death, suggesting that strong energetic demands during ischemia can compromise astrocytic function and viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号