首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   24篇
  2023年   3篇
  2022年   8篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   11篇
  2015年   8篇
  2014年   13篇
  2013年   24篇
  2012年   19篇
  2011年   19篇
  2010年   15篇
  2009年   11篇
  2008年   18篇
  2007年   11篇
  2006年   16篇
  2005年   9篇
  2004年   12篇
  2003年   12篇
  2002年   12篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1992年   3篇
  1991年   2篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   1篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1962年   1篇
  1960年   1篇
  1955年   1篇
  1951年   1篇
  1948年   2篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
31.
32.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
33.
We report the discovery of a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist (3S,4S)-N-[(1R,3S)-3-isopropyl-3-({4-[4-(trifluoromethyl)pyridin-2-yl]piperazin-1-yl}carbonyl)cyclopentyl]-3-methoxytetrahydro-2H-pyran-4-amine (19). After evaluation in 28-day toxicology studies, compound 19 (INCB10820/PF-4178903) was selected as a clinical candidate.  相似文献   
34.

Background  

Nucleoplasmin 2 (NPM2) is an oocyte-specific nuclear protein essential for nuclear and nucleolar organization and early embryonic development. The aims of this study were to clone the bovine NPM2 gene, determine its temporal expression during oocyte development and early embryogenesis, and evaluate the potential role of miRNA-181a in regulation of its expression.  相似文献   
35.
The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.  相似文献   
36.
Metal-protein interactions are vitally important in all living organisms. Metalloproteins, including structural proteins and metabolic enzymes, participate in energy transfer and redox reactions or act as metallochaperones in metal trafficking. Among metal-associated diseases, T cell mediated allergy to nickel (Ni) represents the most common form of human contact hypersensitivity. With the aim to elucidate disease-underlying mechanisms such as Ni-specific T cell activation, we initiated a proteomic approach to identify Ni-interacting proteins in human B cells. As antigen presenting cells, B cells are capable of presenting MHC-associated Ni-epitopes to T cells, a prerequisite for hapten-specific T cell activation. Using metal-affinity enrichment, 2-DE and MS, 22 Ni-interacting proteins were identified. In addition to known Ni-binding molecules such as tubulin, actin or cullin-2, we unexpectedly discovered that at least nine of these 22 proteins belong to stress-inducible heat shock proteins or chaperonins. Enrichment was particularly effective for the hetero-oligomeric TRiC/CCT complex, which is involved in MHC class I processing. Blue Native/SDS electrophoresis analysis revealed that Ni-NTA-beads specifically retained the complete protein machinery, including the associated chaperonin substrate tubulin. The apparent Ni-affinity of heat shock proteins suggests a new function of these molecules in human Ni allergy, by linking innate and adaptive immune responses.  相似文献   
37.
Anbazhagan V  Swamy MJ 《FEBS letters》2005,579(13):2933-2938
PDC-109 binds to sperm plasma membranes by specific interaction with choline phospholipids and induces cholesterol efflux, a necessary event before capacitation - and subsequent fertilization - can occur. The binding of phosphorylcholine (PrC) and lysophosphatidylcholine (Lyso-PC) with PDC-109 was investigated by monitoring the ligand-induced changes in the absorption spectrum of PDC-109. At 20 degrees C, the association constants (K(a)), for PrC and Lyso-PC were obtained as 81.4M(-1) and 2.02 x 10(4) M(-1), respectively, indicating that the binding of Lyso-PC to PDC-109 is 250-fold stronger than that of PrC. From the temperature dependence of the K(a) values, enthalpy of binding (DeltaH(0)) and entropy of binding (DeltaS(0)), were obtained as -79.7 and -237.1 J mol(-1)K(-1) for PrC and -73.0 kJ mol(-1) and -167.3 J mol(-1)K(-1) for Lyso-PC, respectively. These results demonstrate that although the binding of these two ligands is driven by enthalpic forces, smaller negative entropy of binding associated with Lyso-PC results in its significantly stronger binding.  相似文献   
38.
The extraordinary recognition specificity of lectins for carbohydrate ligands appears to be violated as they also bind to porphyrins and other noncarbohydrate ligands. In this study, crystal structures of meso-tetrasulfonatophenylporphyrin (H(2)TPPS) bound to peanut agglutinin (PNA) in the presence and absence of lactose were determined. The binding of H(2)TPPS with PNA involved 11 molecules of H(2)TPPS in different supramolecular stacking arrangements associated with a tetramer of PNA in the crystals of the PNA-H(2)TPPS binary complex as well as the PNA-H(2)TPPS-lactose ternary complex. The ternary complex involved lactose binding only to two subunits of the PNA tetramer, which did not have porphyrin interacting in the vicinity of the carbohydrate-binding site. Comparison of the two structures highlighted the plasticity of the carbohydrate-binding site expressed in terms of the conformational change in lactose binding. The unusual quaternary structure of PNA, which results in exposed protein-protein interaction sites, might be responsible for the porphyrin binding. The association of porphyrin in diverse oligomeric stacking arrangements observed in the PNA-H(2)TPPS complex suggested the possibility of protein-porphyrin aggregation under abnormal physiological conditions. The structures described here provide a possible native conformation of the carbohydrate-binding site of PNA in the absence of the ligand, highlight mapping of the unsaturated binding surfaces of PNA using porphyrin interactions, indicate new leads toward possible application of this lectin in photodynamic therapy, and exhibit diverse modes of porphyrin-lectin interactions with implications to porphyria, a disease that results from abnormal accumulation of porphyrins.  相似文献   
39.
N-Acylethanolamines (NAEs) and N-acylphosphatidylethanolamines (NAPEs) are naturally occurring membrane lipids, whose content increases dramatically in a variety of organisms when subjected to stress, suggesting that they may play a role in the stress-combating mechanisms of organisms. In the light of this, it is of great interest to characterize the structure, physical properties, phase transitions and membrane interactions of these two classes of lipids. This review will present the current status of our understanding of the structure and phase behaviour of NAEs and NAPEs and their interaction with major membrane lipids, namely phosphatidylcholine, phosphatidylethanolamine and cholesterol. The relevance of such interactions to the putative stress-combating and membrane stabilizing properties of these lipids will also be discussed.  相似文献   
40.
The molecular structure, packing properties, and intermolecular interactions of two structural polymorphs of N-palmitoylethanolamine (NPEA) have been determined by single-crystal X-ray diffraction. Polymorphs alpha and beta crystallized in monoclinic space group P2(1)/c and orthorhombic space group Pbca, respectively. In both polymorphs, NPEA molecules are organized in a tail-to-tail manner, resembling a bilayer membrane. Although the molecular packing in polymorph alpha is similar to that in N-myristoylethanolamine and N-stearoylethanolamine, polymorph beta is a new form. The acyl chains in both polymorphs are tilted by approximately 35 degrees with respect to the bilayer normal, with their hydrocarbon moieties packed in an orthorhombic subcell. In both structures, the hydroxy group of NPEA forms two hydrogen bonds with the hydroxy groups of molecules in the opposite leaflet, resulting in extended, zig-zag type H-bonded networks along the b-axis in polymorph alpha and along the a-axis in polymorph beta. Additionally, the amide N-H and carbonyl groups of adjacent molecules are involved in N-H...O hydrogen bonds that connect adjacent molecules along the b-axis and a-axis, respectively, in alpha and beta. Whereas in polymorph alpha the L-shaped NPEA molecules in opposite layers are arranged to yield a Z-like organization, in polymorph beta one of the two NPEA molecules is rotated 180 degrees , leading to a W-like arrangement. Lattice energy calculations indicate that polymorph alpha is more stable than polymorph beta by approximately 2.65 kcal/mol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号