首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1865篇
  免费   169篇
  国内免费   1篇
  2035篇
  2023年   11篇
  2022年   28篇
  2021年   47篇
  2020年   22篇
  2019年   25篇
  2018年   36篇
  2017年   29篇
  2016年   43篇
  2015年   71篇
  2014年   80篇
  2013年   91篇
  2012年   129篇
  2011年   125篇
  2010年   81篇
  2009年   63篇
  2008年   108篇
  2007年   95篇
  2006年   96篇
  2005年   79篇
  2004年   83篇
  2003年   83篇
  2002年   57篇
  2001年   45篇
  2000年   35篇
  1999年   37篇
  1998年   18篇
  1997年   20篇
  1996年   19篇
  1995年   23篇
  1994年   19篇
  1993年   12篇
  1992年   22篇
  1991年   31篇
  1990年   18篇
  1989年   12篇
  1988年   11篇
  1987年   11篇
  1986年   19篇
  1984年   8篇
  1983年   11篇
  1982年   8篇
  1979年   9篇
  1978年   10篇
  1976年   13篇
  1973年   12篇
  1971年   7篇
  1970年   16篇
  1969年   9篇
  1968年   11篇
  1959年   8篇
排序方式: 共有2035条查询结果,搜索用时 15 毫秒
991.
992.
An evergreen revolution   总被引:1,自引:0,他引:1  
The term 'Green Revolution' was coined in 1968 to indicate revolutionary improvements in crop yield in several Asian countries. Many of these improvements came at the cost of adverse environmental effects in areas subjected to intensive farming. However, where population pressure is high, there is no option except to produce more food. Productivity must increase, but in ways which are environmentally safe, economically viable and socially sustainable. This has been christened an 'Evergreen Revolution'.  相似文献   
993.
Self-surgery is rare, but numerous cases of self-mutilation are reported in the literature (eg, castration, enucleation of an eye, and amputation of a limb).[1] We have found no previous reports in the literature of a patient who has performed self-surgery to remove fracture fixation implants.  相似文献   
994.
Regulatory dynamics of energy metabolism in living cells entails a coordinated response of multiple enzyme networks that operate under non-equilibrium conditions. Here we show that mitochondrial dysfunctions associated with the aging process significantly modify nonlinear dynamical signatures in free radical generation/removal, thereby altering energy metabolism in liver cells. We support our data with a plausible biochemical mechanism for modified bioenergetics that involves uncoupling protein-2 that is up-regulated in aged cells as an adaptive response to mitigate increased oxidative stress. Combining high spatial and temporal resolution imaging and bio-energetic measurements, our work provides experimental support to the hypothesis that mitochondria manifest nonlinear dynamical behavior for efficiently regulating energy metabolism in intact cells, and any partial or complete reduction in this behavior would contribute to organ dysfunctions including the aging process and other disease processes.  相似文献   
995.
In the past, several unsuccessful attempts have been made to dissociate homodimeric enolases into their active monomeric forms. The main objective of these studies had been to understand whether intersubunit interactions are essential for the catalytic and structural stability of enolases. Further motivation to investigate the properties of monomeric enolase has arisen from several recent reports on the involvement of enolase in diverse nonglycolytic (moonlighting) functions, where it may occur in monomeric form. Here, we report successful dissociation of dimeric enolases from Plasmodium falciparum, yeast and rabbit muscle into active and isolatable monomers. Dimeric enolases could be dissociated into monomers by high concentrations ( approximately 250 mm) of imidazole and/or hydrogen ions. Two forms were separated using Superdex-75 gel filtration chromatography. A detailed comparison of the kinetic and structural properties of monomeric and dimeric forms of recombinant P. falciparum enolase showed differences in specific activity, salt-induced inhibition and inactivation, thermal stability, etc. Furthermore, we found that enolases from the three species differ in their dimer dissociation profiles. Specifically, on challenge with imidazole, Mg(II) protected the enolases of yeast and rabbit muscle but not of P. falciparum from dissociation. The observed differential stability of the P. falciparum enolase dimer interface with respect to mammalian enolases could be exploited to selectively dissociate the dimeric parasite enzyme into its catalytically inefficient, thermally unstable monomeric form. Thus enolase could be a novel therapeutic target for malaria.  相似文献   
996.
Animal studies suggest that prostaglandins in skeletal muscles stimulate afferents and contribute to the exercise pressor reflex. However, human data regarding a role for prostaglandins in this reflex are varied, in part because of systemic effects of pharmacological agents used to block prostaglandin synthesis. We hypothesized that local blockade of prostaglandin synthesis in exercising muscles could attenuate muscle sympathetic nerve activity (MSNA) responses to fatiguing exercise. Blood pressure (Finapres), heart rate, and MSNA (microneurography) were assessed in 12 young healthy subjects during static handgrip and postexercise muscle ischemia (PEMI) before and after local infusion of 6 mg of ketorolac tromethamine in saline via Bier block (regional intravenous anesthesia). In the second experiment (n = 10), the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased the prostaglandins synthesis to approximately 33% of the baseline. After ketorolac Bier block, the increases in MSNA from the baseline during the fatiguing handgrip was significantly lower than that before the Bier block (before ketorolac: Delta502 +/- 111; post ketorolac: Delta348 +/- 62%, P = 0.016). Moreover, the increase in total MSNA during PEMI after ketorolac was significantly lower than that before the Bier block (P = 0.014). Saline Bier block had no similar effect. The observations indicate that blockade of prostaglandin synthesis attenuates MSNA responses seen during fatiguing handgrip and suggest that prostaglandins contribute to the exercise pressor reflex.  相似文献   
997.
In this age of targeted therapy, the failure of most current drug-discovery efforts to yield safe, effective, and inexpensive drugs has generated widespread concern. Successful drug development has been stymied by a general focus on target selection rather than clinical safety and efficacy. The very process of validating the targets themselves is inefficient and in many cases leads to drugs having poor efficacy and undesirable side effects. Indeed, some rationally designed drugs (e.g., inhibitors of receptor tyrosine kinases, tumor necrosis factor (TNF), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), bcr-abl, and proteasomes) are ineffective against cancers and other inflammatory conditions and produce serious side effects. Since any given cancer carries mutations in an estimated 300 genes, this raises an important question about how effective these targeted therapies can ever be against cancer. Thus, it has become necessary to rethink drug development strategies. This review analyzes the shortcomings of rationally designed target-specific drugs against cancer cell signaling pathways and evaluates the available options for future drug development.  相似文献   
998.

Background

Mechanical ventilation is a resource intensive organ support treatment, and historical studies from low-resource settings had reported a high mortality. We aimed to study the outcomes in patients receiving mechanical ventilation in a contemporary low-resource setting.

Methods

We prospectively studied the characteristics and outcomes (disease-related, mechanical ventilation-related, and process of care-related) in 237 adults mechanically ventilated for a medical illness at a teaching hospital in southern India during February 2011 to August 2012. Vital status of patients discharged from hospital was ascertained on Day 90 or later.

Results

Mean age of the patients was 40 ± 17 years; 140 (51%) were men. Poisoning and envenomation accounted for 98 (41%) of 237 admissions. In total, 87 (37%) patients died in-hospital; 16 (7%) died after discharge; 115 (49%) were alive at 90-day assessment; and 19 (8%) were lost to follow-up. Weaning was attempted in 171 (72%) patients; most patients (78 of 99 [79%]) failing the first attempt could be weaned off. Prolonged mechanical ventilation was required in 20 (8%) patients. Adherence to head-end elevation and deep vein thrombosis prophylaxis were 164 (69%) and 147 (62%) respectively. Risk of nosocomial infections particularly ventilator-associated pneumonia was high (57.2 per 1,000 ventilator-days). Higher APACHE II score quartiles (adjusted HR [95% CI] quartile 2, 2.65 [1.19–5.89]; quartile 3, 2.98 [1.24–7.15]; quartile 4, 5.78 [2.45–13.60]), and new-onset organ failure (2.98 [1.94–4.56]) were independently associated with the risk of death. Patients with poisoning had higher risk of reintubation (43% vs. 20%; P = 0.001) and ventilator-associated pneumonia (75% vs. 53%; P = 0.001). But, their mortality was significantly lower compared to the rest (24% vs. 44%; P = 0.002).

Conclusions

The case-mix considerably differs from other settings. Mortality in this low-resource setting is similar to high-resource settings. But, further improvements in care processes and prevention of nosocomial infections are required.  相似文献   
999.
Experimental animal models of stroke are invaluable tools for understanding stroke pathology and developing more effective treatment strategies. A 2 week protocol for repetitive hypoxic preconditioning (RHP) induces long-term protection against central nervous system (CNS) injury in a mouse model of focal ischemic stroke. RHP consists of 9 stochastic exposures to hypoxia that vary in both duration (2 or 4 hr) and intensity (8% and 11% O2). RHP reduces infarct volumes, blood-brain barrier (BBB) disruption, and the post-stroke inflammatory response for weeks following the last exposure to hypoxia, suggesting a long-term induction of an endogenous CNS-protective phenotype. The methodology for the dual quantification of infarct volume and BBB disruption is effective in assessing neurovascular protection in mice with RHP or other putative neuroprotectants. Adult male Swiss Webster mice were preconditioned by RHP or duration-equivalent exposures to 21% O2 (i.e. room air). A 60 min transient middle cerebral artery occlusion (tMCAo) was induced 2 weeks following the last hypoxic exposure. Both the occlusion and reperfusion were confirmed by transcranial laser Doppler flowmetry. Twenty-two hr after reperfusion, Evans Blue (EB) was intravenously administered through a tail vein injection. 2 hr later, animals were sacrificed by isoflurane overdose and brain sections were stained with 2,3,5- triphenyltetrazolium chloride (TTC). Infarcts volumes were then quantified. Next, EB was extracted from the tissue over 48 hr to determine BBB disruption after tMCAo. In summary, RHP is a simple protocol that can be replicated, with minimal cost, to induce long-term endogenous neurovascular protection from stroke injury in mice, with the translational potential for other CNS-based and systemic pro-inflammatory disease states.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号