首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   10篇
  2011年   6篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有51条查询结果,搜索用时 780 毫秒
21.
In banana and plantain research, it is essential to establish embryogenic cell suspensions together with a highly efficient regeneration and transformation system. This article describes the development of an embryogenic cell suspension (ECS), regeneration, and transformation for plantain cv. “Gonja manjaya”. ECS was established using highly proliferative multiple buds. The frequency of embryogenic friable callus formation was 56.8% of the cultured explants. Friable embryogenic calli with many translucent proembryos were transferred to liquid medium and homogenous cell suspensions were established within 3–4 mo. Approximately 25,000 to 30,000 plants per 1.0 ml of settled cell volume were regenerated in approximately 13–14 mo. ECSs were transformed using Agrobacterium strain EHA 105 harboring the binary vector pBI121. About 50–60 transgenic plants per 0.5 ml settled cell volume were regenerated on selective medium containing 100 mg l−1 kanamycin. Histochemical GUS assays using different tissues of putatively transformed plants demonstrated stable expression of uidA gene. The presence and integration of the uidA gene were confirmed by PCR and Southern blot analysis, respectively. This is the first report showing establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation of an important plantain cultivar, “Gonja manjaya”. This study shows the huge potential for genetic transformation of plantains for disease or pest resistance, as well as tolerance to abiotic factors such as drought stress using this robust regeneration and transformation protocol.  相似文献   
22.
23.
Extracellular fibrinogen-binding protein (Efb) from Staphylococcus aureus inhibits platelet activation, although its mechanism of action has not been established. In this study, we discovered that the N-terminal region of Efb (Efb-N) promotes platelet binding of fibrinogen and that Efb-N binding to platelets proceeds via two independent mechanisms: fibrinogen-mediated and fibrinogen-independent. By proteomic analysis of Efb-interacting proteins within platelets and confirmation by pulldown assays followed by immunoblotting, we identified P-selectin and multimerin-1 as novel Efb interaction partners. The interaction of both P-selectin and multimerin-1 with Efb is independent of fibrinogen. We focused on Efb interaction with P-selectin. Excess of P-selectin extracellular domain significantly impaired Efb binding by activated platelets, suggesting that P-selectin is the main receptor for Efb on the surface of activated platelets. Efb-N interaction with P-selectin inhibited P-selectin binding to its physiological ligand, P-selectin glycoprotein ligand-1 (PSGL-1), both in cell lysates and in cell-free assays. Because of the importance of P-selectin-PSGL-1 binding in the interaction between platelets and leukocytes, we tested human whole blood and found that Efb abolishes the formation of platelet-monocyte and platelet-granulocyte complexes. In summary, we present evidence that in addition to its documented antithrombotic activity, Efb can play an immunoregulatory role via inhibition of P-selectin-PSGL-1-dependent formation of platelet-leukocyte complexes.  相似文献   
24.
Malaria caused by genus Plasmodium, is a parasite which is the main health issue for humans and about half of the population were suffered. An every year, approximately 1.2–2.7 million people died due to malaria globally. Therefore to prevent the spreading of malaria from the glob novel active drugs with specific activities are necessary. The present study aimed to identify novel drug molecule together with the bioinformatic tools for the development of active malarial drugs. As the search for latest anti malarial compound was developed, this work determined six active blends from various drug databases which possess drug-like characteristics and presents a significant anti malarial actions in in-silico level. Compound ID 300238, 889, 76569, 87324, 45678, and Z185397112are a few of the ligands were got from the Toss lab, Maybridge, Cambridge, Life chem, Bitter, and Examine drug databases and docked against hexokinase 1 protein (PDB: 1CZA) with high throughput practical screening (HTVS) using Glide v6.6. Amid the 6 compounds, compound no: 300238 from Toss lab has the greatest docking score of −9.889 kcal/mol targeting 1CZA protein. The active sites of Hexokinase I of protein were determine by using superimposition of the destination and template structure showed similar structural folds and active sites which were decidedly conserved. The quality of hexokinase I protein was considered to be sterically stable where the protein was prepared by utilizing the software protein preparation execute in the Schrodinger suite. Prepared proteins were evaluated using SAVES and the studies of molecular dynamics of the hexokinase, and the GROMACS were performed for protein–ligand complex. The low HOMO-LUMO energy gaps of the compound verified the greater stability of the molecule. Here, the tested drug candidates have good absorption, distribution, metabolism, and excretion (ADME) properties which were established by using QikProp, version 3.4 of Schrodinger.  相似文献   
25.
Chemotherapy with platinum and taxanes is the first line of treatment for all epithelial ovarian cancer (EOC) patients after debulking surgery. Even though the treatment is initially effective in 80% of patients, recurrent cancer is inevitable in the vast majority of cases. Emerging evidence suggests that some tumor cells can survive chemotherapy by activating the self‐renewal pathways resulting in tumor progression and clinical recurrence. These defined population of cells commonly termed as “cancer stem cells” (CSC) may generate the bulk of the tumor by using differentiating pathways. These cells have been shown to be resistant to chemotherapy and, to have enhanced tumor initiating abilities, suggesting CSCs as potential targets for treatment. Recent studies have introduced a new paradigm in ovarian carcinogenesis which proposes in situ carcinoma at the fimbrial end of the fallopian tube to generate high‐grade serous ovarian carcinomas, in contrast to ovarian cortical inclusion cysts (CIC) which produce borderline and low grade serous, mucinous, endometrioid, and clear cell carcinomas. This review summarizes recent advances in our understanding of the cellular origin of EOC and the molecular mechanisms defining the basis of CSC in EOC progression and chemoresistance. Using a model ovarian cancer cell line, we highlight the role of CSC in response to chemotherapy, and relate how CSCs may impact on chemoresistance and ultimately recurrence. We also propose the molecular targeting of CSCs and suggest ways that may improve the efficacy of current chemotherapeutic regimens needed for the management of this disease. J. Cell. Biochem. 114: 21–34, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
26.

Background

Children with latent tuberculosis infection (LTBI) represent a huge reservoir for future disease. We wished to determine Mycobacterium tuberculosis (M.tb) infection prevalence among BCG-immunised five-year-old children in Entebbe, Uganda, but there are limited data on the performance of immunoassays for diagnosis of tuberculosis infection in children in endemic settings. We therefore evaluated agreement between a commercial interferon gamma release assay (T-SPOT.TB) and the tuberculin skin test (TST; 2 units RT-23 tuberculin; positive defined as diameter ≥10 mm), along with the reproducibility of T-SPOT.TB on short-term follow-up, in this population.

Methodology/Principal Findings

We recruited 907 children of which 56 were household contacts of TB patients. They were tested with T-SPOT.TB at age five years and then re-examined with T-SPOT.TB (n = 405) and TST (n = 319) approximately three weeks later. The principal outcome measures were T-SPOT.TB and TST positivity. At five years, 88 (9.7%) children tested positive by T-SPOT.TB. More than half of those that were T-SPOT.TB positive at five years were negative at follow-up, whereas 96% of baseline negatives were consistently negative. We observed somewhat better agreement between initial and follow-up T-SPOT.TB results among household TB contacts (κ = 0.77) than among non-contacts (κ = 0.39). Agreement between T-SPOT.TB and TST was weak (κ = 0.28 and κ = 0.40 for T-SPOT.TB at 5 years and follow-up, respectively). Of 28 children who were positive on both T-SPOT.TB tests, 14 (50%) had a negative TST. Analysis of spot counts showed high levels of instability in responses between baseline and follow-up, indicating variability in circulating numbers of T cells specific for certain M.tb antigens.

Conclusions/Significance

We found that T-SPOT.TB positives are unstable over a three-week follow-up interval, and that TST compares poorly with T-SPOT.TB, making the categorisation of children as TB-infected or TB-uninfected difficult. Existing tools for the diagnosis of TB infection are unsatisfactory in determining infection among children in this setting.  相似文献   
27.
Streptomyces lividans is considered an interesting host for the secretory production of heterologous proteins. To obtain a good secretion yield of heterologous proteins, the availability of suitable nitrogen sources in the medium is required. Often, undefined mixtures of amino acids are used to improve protein yields. However, the understanding of amino acid utilization as well as their contribution to the heterologous protein synthesis is poor.In this paper, amino acid utilization by wild type and recombinant S. lividans TK24 growing on a minimal medium supplemented with casamino acids is profiled by intensive analysis of the exometabolome (metabolic footprint) as a function of time. Dynamics of biomass, substrates, by-products and heterologous protein are characterized, analyzed and compared. As an exemplary protein mouse Tumor Necrosis Factor Alpha (mTNF-α) is considered.Results unveil preferential glutamate and aspartate assimilation, together with glucose and ammonium, but the associated high biomass growth rate is unfavorable for protein production. Excretion of organic acids as well as alanine is observed. Pyruvate and alanine overflow point at an imbalance between carbon and nitrogen catabolism and biosynthetic fluxes. Lactate secretion is probably related to clump formation. Heterologous protein production induces a slowdown in growth, denser clump formation and a shift in metabolism, as reflected in the altered substrate requirements and overflow pattern. Besides glutamate and aspartate, most amino acids are catabolized, however, their exact contribution in heterologous protein production could not be seized from macroscopic quantities.The metabolic footprints presented in this paper provide a first insight into the impact and relevance of amino acids on biomass growth and protein production. Type and availability of substrates together with biomass growth rate and morphology affect the protein secretion efficiency and should be optimally controlled, e.g., by appropriate medium formulation and substrate dosing. Overflow metabolism as well as high biomass growth rates must be avoided because they reduce protein yields. Further investigation of the intracellular metabolic fluxes should be conducted to fully unravel and identify ways to relieve the metabolic burden of plasmid maintenance and heterologous protein production and to prevent overflow.  相似文献   
28.
29.
Obesity is a major risk factor for a myriad of disorders such as insulin resistance and diabetes. The mechanisms underlying these chronic conditions are complex but low grade inflammation and alteration of the endogenous stress defense system are well established. Previous studies indicated that impairment of HSP-25 and HSP-72 was linked to obesity, insulin resistance and diabetes in humans and animals while their induction was associated with improved clinical outcomes. In an attempt to identify additional components of the heat shock response that may be dysregulated by obesity, we used the RT2-Profiler PCR heat shock array, complemented with RT-PCR and validated by Western blot and immunohistochemistry. Using adipose tissue biopsies and PBMC of non-diabetic lean and obese subjects, we report the downregulation of DNAJB3 cochaperone mRNA and protein in obese that negatively correlated with percent body fat (P = 0.0001), triglycerides (P = 0.035) and the inflammatory chemokines IP-10 and RANTES (P = 0.036 and P = 0.02, respectively). DNAJB positively correlated with maximum oxygen consumption (P = 0.031). Based on the beneficial effect of physical exercise, we investigated its possible impact on DNAJB3 expression and indeed, we found that exercise restored the expression of DNAJB3 in obese subjects with a concomitant decrease of phosphorylated JNK. Using cell lines, DNAJB3 protein was reduced following treatment with palmitate and tunicamycin which is suggestive of the link between the expression of DNAJB3 and the activation of the endoplasmic reticulum stress. DNAJB3 was also shown to coimmunoprecipiate with JNK and IKKβ stress kinases along with HSP-72 and thus, suggesting its potential role in modulating their activities. Taken together, these data suggest that DNAJB3 can potentially play a protective role against obesity.  相似文献   
30.
The clinical link among diabetes, obesity, and thyroid dysfunction is of interest. Hence, medical records of 601 patients with diabetes, obesity, and thyroid dysfunctions at the Abha Specialist Center and Military Diabetic Endocrine Center we used in this analysis. Approximately 28% of diabetic patients had thyroid dysfunction, and 12.4% were vitamin D deficient. The patients with thyroid dysfunction had significantly elevated triglyceride levels compared to the patients without thyroid dysfunction (173.6 vs. 128. p=0.009). Vitamin D deficient obese patients were significantly younger (33.99±10.69 vs. 43.68±14.42; p<0.001) and had significantly lower levels of HbA1c (5.73±1.16 vs. 6.83±2.08; p=0.014) and lower systolic BP (120.26±11.75 vs. 124.58±13.63; p=0.049) than non-vitamin D deficient obese patients. Vitamin D deficient thyroid patients had significantly lower diastolic BP (71.4±9.9 vs. 74.9±9.7; p=0.040) and higher HbA1c (8.7±3.6 vs. 6.4±1.7; p=0.003) in comparison to non-vitamin D deficient thyroid patients. Hence, analysis of metabolic disorders in these patients will help combat complications in these cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号