首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   7篇
  2018年   3篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
排序方式: 共有109条查询结果,搜索用时 23 毫秒
21.
The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections.  相似文献   
22.
What genomic landmarks render most genes silent while leaving others expressed on the inactive X chromosome in mammalian females? To date, signals determining expression status of genes on the inactive X remain enigmatic despite the availability of complete genomic sequences. Long interspersed repeats (L1s), particularly abundant on the X, are hypothesized to spread the inactivation signal and are enriched in the vicinity of inactive genes. However, both L1s and inactive genes are also more prevalent in ancient evolutionary strata. Did L1s accumulate there because of their role in inactivation or simply because they spent more time on the rarely recombining X? Here we utilize an experimentally derived inactivation profile of the entire human X chromosome to uncover sequences important for its inactivation, and to predict expression status of individual genes. Focusing on Xp22, where both inactive and active genes reside within evolutionarily young strata, we compare neighborhoods of genes with different inactivation states to identify enriched oligomers. Occurrences of such oligomers are then used as features to train a linear discriminant analysis classifier. Remarkably, expression status is correctly predicted for 84% and 91% of active and inactive genes, respectively, on the entire X, suggesting that oligomers enriched in Xp22 capture most of the genomic signal determining inactivation. To our surprise, the majority of oligomers associated with inactivated genes fall within L1 elements, even though L1 frequency in Xp22 is low. Moreover, these oligomers are enriched in parts of L1 sequences that are usually underrepresented in the genome. Thus, our results strongly support the role of L1s in X inactivation, yet indicate that a chromatin microenvironment composed of multiple genomic sequence elements determines expression status of X chromosome genes.  相似文献   
23.
We use laser flash photolysis and time-resolved Raman spectroscopy of CO-bound heme complexes to study proximal and distal influences on ligand rebinding kinetics. We report kinetics of CO rebinding to microperoxidase (MP) and 2-methylimidazole ligated Fe protoporphyrin IX in the 10 ns to 10 ms time window. We also report CO rebinding kinetics of MP in the 150 fs to 140 ps time window. For dilute, micelle-encapsulated (monodisperse) samples of MP, we do not observe the large amplitude geminate decay at approximately 100 ps previously reported in time-resolved IR measurements on highly concentrated samples [Lim, M., Jackson, T. A., and Anfinrud, P. A. (1997) J. Biol. Inorg. Chem. 2, 531-536]. However, for high concentration aggregated samples, we do observe the large amplitude picosecond CO geminate rebinding and find that it is correlated with the absence of the iron-histidine vibrational mode in the time-resolved Raman spectrum. On the basis of these results, the energetic significance of a putative distal pocket CO docking site proposed by Lim et al. may need to be reconsidered. Finally, when high concentration samples of native myoglobin (Mb) were studied as a control, an analogous increase in the geminate rebinding kinetics was not observed. This verifies that studies of Mb under dilute conditions are applicable to the more concentrated regime found in the cellular milieu.  相似文献   
24.
25.
Berezhna S  Wohlrab H  Champion PM 《Biochemistry》2003,42(20):6149-6158
The conformational states of cytochrome c inside intact and Ca(2+)-exposed mitochondria have been investigated using resonance Raman spectroscopy. Intact and swelling bovine heart and rat liver mitochondria were examined with an excitation wavelength (413.1 nm) in resonance with the Soret transition of ferrous cytochrome c. The different b- to c-type cytochrome concentration ratio in mitochondria from two different tissues was used to help assign the Raman spectral components. Resonance Raman spectra were also recorded for mitochondria fractions (supernatants and pellets) obtained from swollen (Ca(2+)-exposed) mitochondria after differential centrifugation. The results illustrate that cytochrome c has an altered vibrational spectrum in solution, in intact, and in swollen mitochondria. When cytochrome c is released from mitochondria, its Raman spectrum becomes identical to that of ferrous cytochrome c in solution. The spectra of mitochondrial pellets indicate that a small amount of structurally modified cytochrome c remains associated with the heavy membrane fraction. Indeed, spectroscopic shifts in the low-frequency fingerprint and the high-frequency marker-band regions suggest that membrane binding leads to a partial opening of the heme pocket and an alteration of the heme thioether bonds. The results support the conclusion that most cytochrome c molecules in mitochondria are membrane-bound and that the cytochrome c structure changes upon binding. Furthermore, changes in the resonance Raman active mode located at 675 cm(-)(1) in the spectra of intact, swollen, and fractionated mitochondria indicate that b-type cytochromes may also undergo structural alterations during mitochondrial swelling and disruption.  相似文献   
26.
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.  相似文献   
27.
Two or more base damages, abasic sites or single-strand breaks (SSBs) within two helical turns of the DNA form a multiply damaged site (MDS) or clustered lesion. Studies in vitro and in bacteria indicate that attempts to repair two closely opposed base lesions can potentially form a lethal double-strand break (DSB). Ionizing radiation and chemotherapeutic agents introduce complex lesions, and the inability of a cell to repair MDSs is believed to contribute to the lethality of these treatments. The goal of this work was to extend the in vitro studies by examining MDS repair in mammalian cells under physiological conditions. Here, two opposing uracil residues separated by 3, 5, 7, 13 or 29 base-pairs were chosen as model DNA lesions. Double-stranded oligonucleotides containing no damage, a single uracil residue or the MDS were introduced into a non-replicating mammalian construct within the firefly luciferase open reading frame, or at the 5' or 3' end of the luciferase expression cassette. Following transient transfection into HeLa cells, luciferase activity was measured or plasmid DNA was re-isolated from the cells. Formation of a DSB was expected to decrease luciferase expression. However, certain single uracil residues as well as the MDSs decreased luciferase activity, which suggested that the reduction in activity was not due to DSB formation. In fact, Southern analysis of the re-isolated plasmid did not show the presence of linear DNA and demonstrated that none of the constructs was destroyed during repair. Further analysis of the re-isolated DNA demonstrated that only a small percentage of molecules originally carrying a single lesion or an MDS contained deletions. This work indicates that the majority of the clustered lesions were not converted to DSBs and that repair systems in mammalian cells may have established mechanisms to avoid the accumulation of SSB-repair intermediates.  相似文献   
28.

Background

Recent experimental results suggest that impairment of auditory information processing in the thalamo-cortical loop is crucially related to schizophrenia. Large differences between schizophrenia patients and healthy controls were found in the cortical EEG signals.

Methods

We derive a phenomenological mathematical model, based on coupled phase oscillators with continuously distributed frequencies to describe the neural activity of the thalamo-cortical loop. We examine the influence of the bidirectional coupling strengths between the thalamic and the cortical area with regard to the phase-locking effects observed in the experiments. We extend this approach to a model consisting of a thalamic area coupled to two cortical areas, each comprising a set of nonidentical phase oscillators. In the investigations of our model, we applied the Ott-Antonsen theory and the Pikovsky-Rosenblum reduction methods to the original system.

Results

The results derived from our mathematical model satisfactorily reproduce the experimental data obtained by EEG measurements. Furthermore, they show that modifying the coupling strength from the thalamic region to a cortical region affects the duration of phase synchronization, while a change in the feedback to the thalamus affects the strength of synchronization in the cortex. In addition, our model provides an explanation in terms of nonlinear dynamics as to why brain waves desynchronize after a given phase reset.

Conclusion

Our model can explain functional differences seen between EEG records of healthy subjects and schizophrenia patients on a system theoretic basis. Because of this and its predictive character, the model may be considered to pave the way towards an early and reliable clinical detection of schizophrenia that is dependent on the interconnections between the thalamic and cortical regions. In particular, the model parameter that describes the strength of this connection can be used for a diagnostic classification of schizophrenia patients.
  相似文献   
29.

Background

Sanfilippo syndrome type B (MPS III B) is caused by a deficiency of α-N-acetylglucosaminidase enzyme, leading to accumulation of heparan sulfate within lysosomes and eventual progressive cerebral and systemic multiple organ abnormalities. However, little is known about the competence of the blood-brain barrier (BBB) in MPS III B. BBB dysfunction in this devastating disorder could contribute to neuropathological disease manifestations.

Methodology/Principal Findings

In the present study, we investigated structural (electron microscope) and functional (vascular leakage) integrity of the BBB in a mouse model of MPS III B at different stages of disease, focusing on brain structures known to experience neuropathological changes. Major findings of our study were: (1) endothelial cell damage in capillary ultrastructure, compromising the BBB and resulting in vascular leakage, (2) formation of numerous large vacuoles in endothelial cells and perivascular cells (pericytes and perivascular macrophages) in the large majority of vessels, (3) edematous space around microvessels, (4) microaneurysm adjacent to a ruptured endothelium, (6) Evans Blue and albumin microvascular leakage in various brain structures, (7) GM3 ganglioside accumulation in endothelium of the brain microvasculature.

Conclusions/Significance

These new findings of BBB structural and function impairment in MPS III B mice even at early disease stage may have implications for disease pathogenesis and should be considered in current and future development of treatments for MPS III B.  相似文献   
30.
There is increasing evidence that sleep facilitates memory acquisition and consolidation. Moreover, the sleep-wake history preceding memory acquisition and retention as well as circadian timing may be important. We showed previously that sleep deprivation (SD) following learning in OF1 mice impaired their performance on an object recognition task. The learning task was scheduled at the end of the 12 h dark period and the test 24 h later. To investigate the influence of the prominent circadian sleep-wake distribution typical for rodents, we now scheduled the learning task at the beginning of the dark period. Wakefulness following immediately after the learning task was attained either by gentle interference (SD; n?=?20) or by spontaneous wheel running (RW; n?=?20). Two control groups were used: one had no RW throughout the experiment (n?=?23), while the other group's wheel was blocked immediately after acquisition (n?=?16), thereby preventing its use until testing. Recognition memory, defined as the difference in exploration of a novel and of familiar objects, was assessed 24 h later during the test phase. Motor activity and RW use were continuously recorded. Remarkably, performance on the object recognition task was not influenced by the protocols; the waking period following acquisition did not impair memory, independent of the method inducing wakefulness (i.e., sleep deprivation or spontaneous running). Thus, all groups explored the novel object significantly longer than the familiar ones during the test phase. Interestingly, neither the amount of rest lost during the SD interventions nor the amount of rest preceding acquisition influenced performance. However, the total amount of rest obtained by the control and SD mice subjected to acquisition at “dark offset” correlated positively (r?=?0.66) with memory at test, while no such relationship occurred in the corresponding groups tested at dark onset. Neither the amount of running nor intermediate rest correlated with performance at test in the RW group. We conclude that interfering with sleep during the dark period does not affect object recognition memory consolidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号