首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2009篇
  免费   139篇
  国内免费   4篇
  2152篇
  2023年   17篇
  2022年   41篇
  2021年   45篇
  2020年   23篇
  2019年   40篇
  2018年   62篇
  2017年   42篇
  2016年   54篇
  2015年   78篇
  2014年   109篇
  2013年   140篇
  2012年   174篇
  2011年   163篇
  2010年   108篇
  2009年   88篇
  2008年   124篇
  2007年   141篇
  2006年   104篇
  2005年   126篇
  2004年   107篇
  2003年   94篇
  2002年   91篇
  2001年   11篇
  2000年   9篇
  1999年   18篇
  1998年   20篇
  1997年   19篇
  1996年   17篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   5篇
  1975年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有2152条查询结果,搜索用时 15 毫秒
991.
992.
993.
We characterized nearly 500 β-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. We found 28 different mutations in the β-globin gene, including three mutations (βS, βC, and βO-Arab) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates—Druze and Samaritans—had a single mutation each. Fifteen of the β-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele—nonsense codon 37—appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of β-globin mutations can be largely explained by migration events that occurred in the past millennium.  相似文献   
994.
Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion–duplication or duplication–triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in Caenorhabditis elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication.  相似文献   
995.
Whiteflies (Homoptera: Aleyrodidae) are sap-sucking insects that harbor "Candidatus Portiera aleyrodidarum," an obligatory symbiotic bacterium which is housed in a special organ called the bacteriome. These insects are also home for a diverse facultative microbial community which may include Hamiltonella, Arsenophonus, Fritchea, Wolbachia, and Cardinium spp. In this study, the bacteria associated with a B biotype of the sweet potato whitefly Bemisia tabaci were characterized using molecular fingerprinting techniques, and a Rickettsia sp. was detected for the first time in this insect family. Rickettsia sp. distribution, transmission and localization were studied using PCR and fluorescence in situ hybridizations (FISH). Rickettsia was found in all 20 Israeli B. tabaci populations screened but not in all individuals within each population. A FISH analysis of B. tabaci eggs, nymphs, and adults revealed a unique concentration of Rickettsia around the gut and follicle cells, as well as a random distribution in the hemolymph. We postulate that the Rickettsia enters the oocyte together with the bacteriocytes, leaves these symbiont-housing cells when the egg is laid, multiplies and spreads throughout the egg during embryogenesis and, subsequently, disperses throughout the body of the hatching nymph, excluding the bacteriomes. Although the role Rickettsia plays in the biology of the whitefly is currently unknown, the vertical transmission on the one hand and the partial within-population infection on the other suggest a phenotype that is advantageous under certain conditions but may be deleterious enough to prevent fixation under others.  相似文献   
996.
The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.  相似文献   
997.
The activity of α-1,2-mannosidase I is required for the conversion of high-mannose to hybrid-type (ConA reactive) and complex-type N-glycans (Phaseolus vulgaris-leukoagglutinin [PHA-L] reactive) during posttranslational protein N-glycosylation. We recently demonstrated that α-1,2-mannosidase I mRNA decreases in graft-infiltrating CD11c(+) dendritic cells (DCs) prior to allograft rejection. Although highly expressed in immature DCs, little is known about its role in DC functions. In this study, analysis of surface complex-type N-glycan expression by lectin staining revealed the existence of PHA-L(low) and PHA-L(high) subpopulations in murine splenic conventional DCs, as well as in bone marrow-derived DC (BMDCs), whereas plasmacytoid DCs are nearly exclusively PHA-L(high). Interestingly, all PHA-L(high) DCs displayed a strongly reduced responsiveness to TNF-α-induced p38-MAPK activation compared with PHA-L(low) DCs, indicating differences in PHA-L-binding capacities between DCs with different inflammatory properties. However, p38 phosphorylation levels were increased in BMDCs overexpressing α-1,2-mannosidase I mRNA. Moreover, hybrid-type, but not complex-type, N-glycans are required for TNF-α-induced p38-MAPK activation and subsequent phenotypic maturation of BMDCs (MHC-II, CD86, CCR7 upregulation). α-1,2-mannosidase I inhibitor-treated DCs displayed diminished transendothelial migration in response to CCL19, homing to regional lymph nodes, and priming of IFN-γ-producing T cells in vivo. In contrast, the activity of α-1,2-mannosidase I is dispensable for LPS-induced signaling, as well as the DCs' general capability for phenotypic and functional maturation. Systemic application of an α-1,2-mannosidase I inhibitor was able to significantly prolong allograft survival in a murine high-responder corneal transplantation model, further highlighting the importance of N-glycan processing by α-1,2-mannosidase I for alloantigen presentation and T cell priming.  相似文献   
998.
Cellular and Molecular Neurobiology - The opioid receptor (OPR) family comprises the mu-, delta-, and kappa-opioid, and nociceptin receptors that belong to the superfamily of 7-transmembrane...  相似文献   
999.
Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays.  相似文献   
1000.
The lymph gland is the major site of hematopoiesis in Drosophila. During late larval stages three types of hemocytes are produced, plasmatocytes, crystal cells, and lamellocytes, and their differentiation is tightly controlled by conserved factors and signaling pathways. JAK/STAT is one of these pathways which have essential roles in vertebrate and fly hematopoiesis. We show that Stat has opposing cell-autonomous and non-autonomous functions in hemocyte differentiation. Using a clonal approach we established that loss of Stat in a set of prohemocytes in the cortical zone induces plasmatocyte maturation in adjacent hemocytes. Hemocytes lacking Stat fail to differentiate into plasmatocytes, indicating that Stat positively and cell-autonomously controls plasmatocyte differentiation. We also identified the GATA factor pannier (pnr) as a downstream target of Stat. By analyzing the phenotypes resulting from clonal loss and over-expression of pnr in lymph glands, we find that Pnr is positively regulated by Stat and specifically required for the differentiation of plasmatocytes. Stat and Pnr represent two essential factors controlling blood cell maturation in the developing lymph gland and exert their functions both in a cell-autonomous and non-cell-autonomous manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号