首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3898篇
  免费   175篇
  国内免费   4篇
  2023年   15篇
  2022年   45篇
  2021年   68篇
  2020年   36篇
  2019年   59篇
  2018年   98篇
  2017年   63篇
  2016年   85篇
  2015年   105篇
  2014年   174篇
  2013年   229篇
  2012年   270篇
  2011年   299篇
  2010年   211篇
  2009年   157篇
  2008年   191篇
  2007年   218篇
  2006年   178篇
  2005年   191篇
  2004年   167篇
  2003年   150篇
  2002年   167篇
  2001年   99篇
  2000年   73篇
  1999年   49篇
  1998年   38篇
  1997年   26篇
  1996年   23篇
  1995年   16篇
  1994年   20篇
  1992年   35篇
  1991年   33篇
  1990年   32篇
  1989年   30篇
  1988年   29篇
  1987年   32篇
  1986年   27篇
  1985年   30篇
  1984年   30篇
  1983年   23篇
  1979年   16篇
  1976年   13篇
  1975年   22篇
  1974年   19篇
  1973年   20篇
  1972年   17篇
  1971年   17篇
  1970年   14篇
  1968年   19篇
  1967年   13篇
排序方式: 共有4077条查询结果,搜索用时 93 毫秒
91.
Microtubule inhibitors are invaluable tools in cancer chemotherapy: taxanes and vinca alkaloids have been successfully used in the clinic over the past thirty years against a broad range of tumors. However, two factors have limited the effectiveness of microtubule inhibitors: toxicity and resistance. In particular, the latter is highly unpredictable, variable from patient to patient and is believed to be the cause of treatment failure in most cases of metastatic cancers. For these reasons, there is an increasing demand for new microtubule inhibitors that can overcome resistance mechanisms and that, at the same time, have reduced side effects. Here we present a novel microtubule inhibitor, 4SC-207, which shows strong anti-proliferative activity in a large panel of tumor cell lines with an average GI50 of 11nM. In particular, 4SC-207 is active in multi-drug resistant cell lines, such as HCT-15 and ACHN, suggesting that it is a poor substrate for drug efflux pumps. 4SC-207 inhibits microtubule growth in vitro and in vivo and promotes, in a dose dependent manner, a mitotic delay/arrest, followed by apoptosis or aberrant divisions due to chromosome alignment defects and formation of multi-polar spindles. Furthermore, preliminary data from preclinical studies suggest low propensity towards bone marrow toxicities at concentrations that inhibit tumor growth in paclitaxel-resistant xenograft models. In summary, our results suggest that 4SC-207 may be a potential anti-cancer agent.  相似文献   
92.
Citrus greening (Huanglongbing, HLB) is one of the most destructive diseases of citrus worldwide. In South Asia HLB has been known for more than a century, while in Americas the disease was found relatively recently. HLB is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ (CLas) has most wide distribution. Recently, a number of studies identified different regions in the CLas genome with variable number of tandem repeats (VNTRs) that could be used for examination of CLas diversity. One of the objectives of the work presented here was to further validate the VNTR analysis-based approach by assessing the stability of these repeats upon multiplication of the pathogen in a host over an extended period of time and upon its passaging from a host to a host using CLas populations from Florida. Our results showed that the numbers of tandem repeats in the four loci tested display very distinguishable “signature profiles” for the two Florida-type CLas haplotype groups. Remarkably, the profiles do not change upon passage of the pathogen in citrus and psyllid hosts as well as after its presence within a host over a period of five years, suggesting that VNTR analysis-based approach represents a valid methodology for examination of the pathogen populations in various geographical regions. Interestingly, an extended analysis of CLas populations in different locations throughout Florida and in several countries in the Caribbean and Central America regions and in Mexico where the pathogen has been introduced recently demonstrated the dispersion of the same haplotypes of CLas. On the other hand, these CLas populations appeared to differ significantly from those obtained from locations where the disease has been present for a much longer time.  相似文献   
93.

Background

Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases and acts upon the cells. Response to cfDNA depends on concentrations and levels of the damage within cfDNA. Oxidized extracellular DNA acts as a stress signal and elicits an adaptive response.

Principal Findings

Here we show that oxidized extracellular DNA stimulates the survival of MCF-7 tumor cells. Importantly, in cells exposed to oxidized DNA, the suppression of cell death is accompanied by an increase in the markers of genome instability. Short-term exposure to oxidized DNA results in both single- and double strand DNA breaks. Longer treatments evoke a compensatory response that leads to a decrease in the levels of chromatin fragmentations across cell populations. Exposure to oxidized DNA leads to a decrease in the activity of NRF2 and an increase in the activity of NF-kB and STAT3. A model that describes the role of oxidized DNA released from apoptotic cells in tumor biology is proposed.

Conclusions/Significance

Survival of cells with an unstable genome may substantially augment progression of malignancy. Further studies of the effects of extracellular DNA on malignant and normal cells are warranted.  相似文献   
94.
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.  相似文献   
95.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   
96.
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   
97.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   
98.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   
99.
Exome sequencing coupled with homozygosity mapping was used to identify a transition mutation (c.794T>C; p.Leu265Ser) in ELMOD3 at the DFNB88 locus that is associated with nonsyndromic deafness in a large Pakistani family, PKDF468. The affected individuals of this family exhibited pre-lingual, severe-to-profound degrees of mixed hearing loss. ELMOD3 belongs to the engulfment and cell motility (ELMO) family, which consists of six paralogs in mammals. Several members of the ELMO family have been shown to regulate a subset of GTPases within the Ras superfamily. However, ELMOD3 is a largely uncharacterized protein that has no previously known biochemical activities. We found that in rodents, within the sensory epithelia of the inner ear, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Fluorescently tagged ELMOD3 co-localized with the actin cytoskeleton in MDCK cells and actin-based microvilli of LLC-PK1-CL4 epithelial cells. The p.Leu265Ser mutation in the ELMO domain impaired each of these activities. Super-resolution imaging revealed instances of close association of ELMOD3 with actin at the plasma membrane of MDCK cells. Furthermore, recombinant human GST-ELMOD3 exhibited GTPase activating protein (GAP) activity against the Arl2 GTPase, which was completely abolished by the p.Leu265Ser mutation. Collectively, our data provide the first insights into the expression and biochemical properties of ELMOD3 and highlight its functional links to sound perception and actin cytoskeleton.  相似文献   
100.
Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-“vector” it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAcβ bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1–3Galβ (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号