首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2173篇
  免费   142篇
  国内免费   5篇
  2023年   15篇
  2022年   31篇
  2021年   46篇
  2020年   24篇
  2019年   40篇
  2018年   61篇
  2017年   43篇
  2016年   61篇
  2015年   82篇
  2014年   120篇
  2013年   155篇
  2012年   182篇
  2011年   172篇
  2010年   115篇
  2009年   95篇
  2008年   124篇
  2007年   150篇
  2006年   120篇
  2005年   130篇
  2004年   110篇
  2003年   102篇
  2002年   97篇
  2001年   17篇
  2000年   14篇
  1999年   21篇
  1998年   24篇
  1997年   20篇
  1996年   19篇
  1995年   12篇
  1994年   11篇
  1993年   7篇
  1992年   19篇
  1991年   8篇
  1990年   7篇
  1989年   9篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1969年   2篇
排序方式: 共有2320条查询结果,搜索用时 15 毫秒
111.
Zhao L  Beyer NJ  Borisova SA  Liu HW 《Biochemistry》2003,42(50):14794-14804
In our study of the biosynthesis of D-desosamine in Streptomyces venezuelae, we have cloned and sequenced the entire desosamine biosynthetic cluster. The deduced product of one of the genes, desR, in this cluster shows high sequence homology to beta-glucosidases, which catalyze the hydrolysis of the glycosidic linkages, a function not required for the biosynthesis of desosamine. Disruption of the desR gene led to the accumulation of glucosylated methymycin/neomethymycin products, all of which are biologically inactive. It is thus conceivable that methymycin/neomethymycin may be produced as inert diglycosides, and the DesR protein is responsible for transforming these antibiotics from their dormant to their active forms. This hypothesis is supported by the fact that the translated desR gene has a leader sequence characteristic of secretory proteins, allowing it to be transported through the cell membrane and hydrolyze the modified antibiotics extracellularly to activate them. Expression of desR and biochemical characterization of the purified protein confirmed the catalytic function of this enzyme as a beta-glycosidase capable of catalyzing the hydrolysis of glucosylated methymycin/neomethymycin produced by S. venezuelae. These results provide strong evidence substantiating glycosylation/deglycosylation as a likely self-resistance mechanism of S. venezuelae. However, further experiments have suggested that such a glycosylation/deglycosylation is only a secondary self-defense mechanism in S. venezuelae, whereas modification of 23S rRNA, which is the target site for methymycin and its derivatives, by PikR1 and PikR2 is a primary self-resistance mechanism. Considering that postsynthetic glycosylation is an effective means to control the biological activity of macrolide antibiotics, the availability of macrolide glycosidases, which can be used for the activation of newly formed antibiotics that have been deliberately deactivated by engineered glycosyltransferases, may be a valuable part of an overall strategy for the development of novel antibiotics using the combinatorial biosynthetic approach.  相似文献   
112.
Obelin from the hydroid Obelia longissima and aequorin are members of a subfamily of Ca(2+)-regulated photoproteins that is a part of the larger EF-hand calcium binding protein family. On the addition of Ca(2+), obelin generates a blue bioluminescence emission (lambda(max) = 485 nm) as the result of the oxidative decarboxylation of the bound substrate, coelenterazine. The W92F obelin mutant is noteworthy because of the unusually high speed with which it responds to sudden changes of [Ca(2+)] and because it emits violet light rather than blue due to a prominent band with lambda(max) = 405 nm. Increase of pH in the range from 5.5 to 8.5 and using D(2)O both diminish the contribution of the 405 nm band, indicating that excited state proton transfer is involved. Fluorescence model studies have suggested the origin of the 485 nm emission as the excited state of an anion of coelenteramide, the bioluminescence reaction product, and 405 nm from the excited neutral state. Assuming that the dimensions of the substrate binding cavity do not change during the excited state formation, a His22 residue within hydrogen bonding distance to the 6-(p-hydroxy)-phenyl group of the excited coelenteramide is a likely candidate for accepting the phenol proton to produce an ion-pair excited state, in support of recent suggestions for the bioluminescence emitting state. The proton transfer could be impeded by removal of the Trp92 H-bond, resulting in strong enhancement of a 405 nm band giving the violet color of bioluminescence. Comparative analysis of 3D structures of the wild-type (WT) and W92F obelins reveals that there are structural displacements of certain key Ca(2+)-ligating residues in the loops of the two C-terminal EF hands as well as clear differences in hydrogen bond networks in W92F. For instance, the hydrogen bond between the side-chain oxygen atom of Asp169 and the main-chain nitrogen of Arg112 binds together the incoming alpha-helix of loop III and the exiting alpha-helix of loop IV in WT, providing probably concerted changes in these EF hands on calcium binding. But this linkage is not found in W92F obelin. These differences apparently do not change the overall affinity to calcium of W92F obelin but may account for the kinetic differences between the WT and mutant obelins. From analysis of the hydrogen bond network in the coelenterazine binding cavity, it is proposed that the trigger for bioluminescence reaction in these Ca(2+)-regulated photoproteins may be a shift of the hydrogen bond donor-acceptor separations around the coelenterazine-2-hydroperoxy substrate, initiated by small spatial adjustment of the exiting alpha-helix of loop IV.  相似文献   
113.
The PEF family proteins sorcin and grancalcin interact in vivo and in vitro   总被引:3,自引:0,他引:3  
The penta-EF hand (PEF) family of calcium binding proteins includes grancalcin, peflin, sorcin, calpain large and small subunits as well as ALG-2. Systematic testing of the heterodimerization abilities of the PEF proteins using the yeast two-hybrid and glutathione S-transferase pull-down assays revealed the new finding that grancalcin interacts strongly with sorcin. In addition, sorcin and grancalcin can be co-immunoprecipitated from lysates of human umbilical vein endothelial cells. Our results indicate that heterodimerization, in addition to differential interactions with target proteins, might be a way to regulate and fine tune processes mediated by calcium binding proteins of the penta-EF hand type.  相似文献   
114.
The protein kinase D family of enzymes consists of three isoforms: PKD1/PKCmu PKD2 and PKD3/PKCnu. They all share a similar architecture with regulatory sub-domains that play specific roles in the activation, translocation and function of the enzymes. The PKD enzymes have recently been implicated in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, metastasis, immune responses, apoptosis and cell proliferation.  相似文献   
115.
The Ca(2+)-regulated photoprotein obelin was substituted at Trp92 by His, Lys, Glu, and Arg. All mutants fold into stable conformations and produce bimodal bioluminescence spectra with enhanced contribution from a violet emission. The W92R mutant has an almost monomodal bioluminescence (lambdamax=390 nm) and monomodal fluorescence (lambdamax=425 nm) of the product. Results are interpreted by an excited state proton transfer mechanism involving the substituent side group and His22 in the binding cavity.  相似文献   
116.
117.
RANK ligand (RANKL) induces activation of NFkappaB, enhancing the formation, resorptive activity, and survival of osteoclasts. Ca(2+) transduces many signaling events, however, it is not known whether the actions of RANKL involve Ca(2+) signaling. We investigated the effects of RANKL on rat osteoclasts using microspectrofluorimetry and patch clamp. RANKL induced transient elevation of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) to maxima 220 nm above basal, resulting in activation of Ca(2+)-dependent K(+) current. RANKL elevated [Ca(2+)](i) in Ca(2+)-containing and Ca(2+)-free media, and responses were prevented by the phospholipase C inhibitor. Suppression of [Ca(2+)](i) elevation using the intracellular Ca(2+) chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) abolished the ability of RANKL to enhance osteoclast survival. Using immunofluorescence, NFkappaB was found predominantly in the cytosol of untreated osteoclasts. RANKL induced transient translocation of NFkappaB to the nuclei, which was maximal at 15 min. or BAPTA delayed nuclear translocation of NFkappaB. Delays were also observed upon inhibition of calcineurin or protein kinase C. We conclude that RANKL acts through phospholipase C to release Ca(2+) from intracellular stores, accelerating nuclear translocation of NFkappaB and promoting osteoclast survival. Such cross-talk between NFkappaB and Ca(2+) signaling provides a novel mechanism for the temporal regulation of gene expression in osteoclasts and other cell types.  相似文献   
118.
Tsai J  Sultana R  Lee Y  Pertea G  Karamycheva S  Antonescu V  Cho J  Parvizi B  Cheung F  Quackenbush J 《Genome biology》2001,2(11):software0002.1-software00024
Microarray expression analysis is providing unprecedented data on gene expression in humans and mammalian model systems. Although such studies provide a tremendous resource for understanding human disease states, one of the significant challenges is cross-referencing the data derived from different species, across diverse expression analysis platforms, in order to properly derive inferences regarding gene expression and disease state. To address this problem, we have developed RESOURCERER, a microarray-resource annotation and cross-reference database built using the analysis of expressed sequence tags (ESTs) and gene sequences provided by the TIGR Gene Index (TGI) and TIGR Orthologous Gene Alignment (TOGA) databases [now called Eukaryotic Gene Orthologs (EGO)].  相似文献   
119.
The goal of this study was to examine the mechanism of magnesium binding to the regulatory domain of skeletal troponin C (TnC). The fluorescence of Trp(29), immediately preceding the first calcium-binding loop in TnC(F29W), was unchanged by addition of magnesium, but increased upon calcium binding with an affinity of 3.3 microm. However, the calcium-dependent increase in TnC(F29W) fluorescence could be reversed by addition of magnesium, with a calculated competitive magnesium affinity of 2.2 mm. When a Z acid pair was introduced into the first EF-hand of TnC(F29W), the fluorescence of G34DTnC(F29W) increased upon addition of magnesium or calcium with affinities of 295 and 1.9 microm, respectively. Addition of 3 mm magnesium decreased the calcium sensitivity of TnC(F29W) and G34DTnC(F29W) approximately 2- and 6-fold, respectively. Exchange of G34DTnC(F29W) into skinned psoas muscle fibers decreased fiber calcium sensitivity approximately 1.7-fold compared with TnC(F29W) at 1 mm [magnesium](free) and approximately 3.2-fold at 3 mm [magnesium](free). Thus, incorporation of a Z acid pair into the first EF-hand allows it to bind magnesium with high affinity. Furthermore, the data suggests that the second EF-hand, but not the first, of TnC is responsible for the competitive magnesium binding to the regulatory domain.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号