首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   13篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   3篇
  2010年   6篇
  2009年   9篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1985年   2篇
排序方式: 共有88条查询结果,搜索用时 93 毫秒
31.
The viral and transmissible spongiform encephalopathy (TSE) safety of therapeutics of biological origin (biologicals) is greatly influenced by the nature and degree of variability of the source material and by the mode of purification. Plasma-derived and recombinant DNA products currently have good viral safety records, but challenges remain. In general, large enveloped viruses are easier to remove from biologicals than small 'naked' viruses. Monoclonal antibodies and recombinant DNA biopharmaceuticals are derived from relatively homogeneous source materials and purified by multistep schemes that are robust and amenable to scientific analysis and engineering improvement. Viral clearance is more challenging for blood and cell products, as they are complex and labile. Source selection (e.g. country of origin, deferral for CJD risk factors) currently occupies the front line for ensuring that biologicals are free of TSE agents, but robust methods for their clearance from products are under development.  相似文献   
32.
33.
Enzymes are fluctuating particles in thermal equilibrium with their solvent environment. A variety of models of enzyme action have postulated selective excitation of enzyme vibrational modes or triggering of correlated motion of catalytic groups through collisions with solvent particles as the basis of catalytic activity. Solvent composition and structure are expected to influence such interactions. Solutes such as p-dioxane, t-butanol, and tetraalkylammonium chlorides are known to be strong perturbants of the structure of water. However, when the kinetic parameters of two enzymes, carboxypeptidase A and alpha-chymotrypsin, were examined carefully in aqueous mixtures containing these solutes, no significant influence of solvent structure or mass composition on the catalytic rate constant was found. The results indicate, furthermore, that, within the low viscosity limit, fluctuations in enzyme structure that are responsible for activated processes in the catalytically rate limiting step appear not to be significantly influenced by dynamic processes in the bulk solvent.  相似文献   
34.
Fermentanomics, or a global understanding of a culture state on the molecular level empowered by advanced techniques like NMR, was employed to show that a model hybridoma culture supplied with glutamine and glucose depletes aspartate, cysteine, methionine, tryptophan, and tyrosine during antibody production. Supplementation with these amino acids prevents depletion and improves culture performance. Furthermore, no significant changes were observed in the distribution of glycans attached to the IgG3 in cultures supplemented with specific amino acids, arguing that this strategy can be implemented without fear of impact on important product quality attributes. In summary, a targeted strategy of quantifying media components and designing a supplementation strategy can improve bioprocess cell cultures when enpowered by fermentanomics tools. Published 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:745–753, 2013  相似文献   
35.
We surveyed 23 antibody-related marketing applications for glycoform analytical and functional information. Our database analysis shows a clear trend of increasing sophistication of analytical methods used to identify and quantify glycans. These have revealed a high degree of complexity and heterogeneity of glycans attached to antibody products. The nature of the complexity is influenced by product type and expression system, and may be associated with functional consequences in some but not all cases.  相似文献   
36.
The Polish microbiologist and philosopher of science, Ludwik Fleck (1896-1961), was a pioneer in constructivist history and philosophy of science. Based on studies in the history of syphilis, Fleck hypothesized that many established scientific facts are linked, in their development, to pre-scientific "proto-ideas." In 1935, Fleck proposed that the history of germ theories could be approached through his thesis on proto-ideas. His proposal, however, remained little more than a vague suggestion and was never developed in further detail. This paper introduces the concept of proto-ideas and discusses the central epistemological and historiographical implications of Fleck's thesis. The Fleckian approach offers an attractive alternative to positivist reconstructions of the early history of germ theories and provides a useful framework for a deeper understanding of the sociocultural background of the development of modern knowledge of infection.  相似文献   
37.
It is believed that gene/environment interaction (GEI) plays a pivotal role in the development of motor skills, which are acquired via practicing or motor training. However, the underlying molecular/neuronal mechanisms are still unclear. Here, we reported that the expression of NR2B, a subunit of NMDA receptors, in cerebellar granule cells specifically enhanced the effect of voluntary motor training on motor learning in the mouse. Moreover, this effect was characterized as motor learning-specific and developmental stage-dependent, because neither emotional/spatial memory was affected nor was the enhanced motor learning observed when the motor training was conducted starting at the age of 3 months old in these transgenic mice. These results indicate that changes in the expression of gene(s) that are involved in regulating synaptic plasticity in cerebellar granule cells may constitute a molecular basis for the cerebellum to be involved in the GEI by facilitating motor skill learning.  相似文献   
38.
The bioprocess development cycle is a complex task that requires a complete understanding of the engineering of the process (e.g., mass transfer, mixing, CO(2) removal, process monitoring, and control) and its affect on cell biology and product quality. Despite their widespread use in bioprocess development, spinner flasks generally lack engineering characterization of critical physical parameters such as k(L)a, P/V, or mixing time. In this study, mass transfer characterization of a 250-mL spinner flask using optical patch-based sensors is presented. The results quantitatively show the effect of the impeller type, liquid filling volume, and agitation speed on the volumetric mass transfer coefficient (k(L)a) in a 250-mL spinner flask, and how they can be manipulated to match mass transfer capability at large culture devices. Thus, process understanding in spinner flasks can be improved, and these devices can be seamlessly integrated in a rational scale-up strategy from cell thawing to bench-scale bioreactors (and beyond) in biomanufacturing.  相似文献   
39.
A multi‐tiered approach to determine the binding mechanism of viral clearance utilizing a multi‐modal anion exchange resin was applied to a panel of four viral species that are typically used in validating viral clearance studies (i.e., X‐MuLV, MVM, REO3, and PrV). First, virus spiked buffer‐only experiments were conducted to evaluate the virus's affinity for single mode and multi‐modal chromatography resins under different buffer conditions in a chromatography column setting. From these results we hypothesize that the mechanisms of binding of the viruses involve binding to both the hydrophobic and anionic functional groups. This mechanistic view agreed with the general surface characteristics of the different virus species in terms of isoelectric point and relative hydrophobicity values. This hypothesized mechanistic binding was then tested with commercially relevant, in‐process materials, in which competitive binding occurred between the load components (e.g., viruses, target product, and impurities) and the resin. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1019–1026, 2018  相似文献   
40.
Genome‐scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745–753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome‐scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163–1173, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号