首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1309篇
  免费   127篇
  国内免费   3篇
  2022年   12篇
  2021年   11篇
  2020年   5篇
  2019年   13篇
  2018年   14篇
  2017年   22篇
  2016年   24篇
  2015年   38篇
  2014年   67篇
  2013年   63篇
  2012年   73篇
  2011年   82篇
  2010年   52篇
  2009年   45篇
  2008年   52篇
  2007年   66篇
  2006年   56篇
  2005年   60篇
  2004年   48篇
  2003年   66篇
  2002年   40篇
  2001年   58篇
  2000年   57篇
  1999年   44篇
  1998年   29篇
  1997年   21篇
  1996年   19篇
  1995年   21篇
  1994年   17篇
  1993年   17篇
  1992年   26篇
  1991年   20篇
  1990年   16篇
  1989年   15篇
  1988年   19篇
  1987年   9篇
  1986年   12篇
  1985年   11篇
  1984年   10篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   12篇
  1978年   9篇
  1977年   6篇
  1976年   6篇
  1975年   19篇
  1974年   9篇
  1973年   5篇
  1971年   4篇
排序方式: 共有1439条查询结果,搜索用时 15 毫秒
161.
A sensitive and specific method was developed for quantification of alprazolam and its two metabolites 4-hydroxyalprazolam and alpha-hydroxyalprazolam in plasma. The work up procedure was solid phase extraction. Liquid chromatography-mass spectrometry (LC-MS) was used for separation, detection and quantification of the analytes. The limit of quantitation (LOQ) was 0.05 ng/mL for alprazolam and the two metabolites. The extraction recovery was more than 82% for alprazolam and its metabolites. The within- and between-assay coefficients of variation were in the range of 1.9-17.9%. The method was used for determination of the pharmacokinetics parameters of alprazolam and its two metabolites in healthy Caucasian subjects who ingested 1mg of alprazolam.  相似文献   
162.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   
163.
NADPH dependent activation of microsomal glutathione transferase 1   总被引:1,自引:0,他引:1  
Microsomal glutathione transferase 1 (MGST1) can become activated up to 30-fold by several mechanisms in vitro (e.g. covalent modification by reactive electrophiles such as N-ethylmaleimide (NEM)). Activation has also been observed in vivo during oxidative stress. It has been noted that an NADPH generating system (g.s.) can activate MGST1 (up to 2-fold) in microsomal incubations, but the mechanism was unclear. We show here that NADPH g.s treatment impaired N-ethylmaleimide activation, indicating a shared target (identified as cysteine-49 in the latter case). Furthermore, NADPH activation was prevented by sulfhydryl compounds (glutathione and dithiothreitol). A well established candidate for activation would be oxidative stress, however we could exclude that oxidation mediated by cytochrome P450 2E1 (or flavine monooxygenase) was responsible for activation under a defined set of experimental conditions since superoxide or hydrogen peroxide alone did not activate the enzyme (in microsomes prepared by our routine procedure). Actually, the ability of MGST1 to become activated by hydrogen peroxide is critically dependent on the microsome preparation method (which influences hydrogen peroxide decomposition rate as shown here), explaining variable results in the literature. NADPH g.s. dependent activation of MGST1 could instead be explained, at least partly, by a direct effect observed also with purified enzyme (up to 1.4-fold activation). This activation was inhibited by sulfhydryl compounds and thus displays the same characteristics as that of the microsomal system. Whereas NADPH, and also ATP, activated purified MGST1, several nucleotide analogues did not, demonstrating specificity. It is thus an intriguing possibility that MGST1 function could be modulated by ligands (as well as reactive oxygen species) during oxidative stress when sulfhydryls are depleted.  相似文献   
164.
The importance of sexual selection in population divergence is of much interest, mainly because it is thought to cause reproductive isolation and hence could lead to speciation. Sexually selected traits have been hypothesized to diverge faster between populations than other traits, presumably because of differences in the strength, mechanism or dynamics of selection. We investigated this by quantifying population divergence in eight morphological characters in 12 south Swedish populations of a sexually dimorphic damselfly, the banded demoiselle (Calopteryx splendens). The morphological characters included a secondary sexual character, the male melanized wing spot, which has an important function in both inter- and intrasexual selection. In addition, we investigated molecular population divergence, revealed by amplified fragment length polymorphism (AFLP) analysis. Molecular population divergence was highly significant among these Northern European populations (overall F(st)=0.054; pairwise population F(st)'s ranged from approximately 0 to 0.13). We found evidence for isolation-by-distance (r=0.70) for the molecular markers and a significant correlation between molecular and phenotypic population divergence (r=0.39). One interpretation is that population divergence for the AFLP loci are affected by genetic drift, but is also indirectly influenced by selection, due to linkage with loci for the phenotypic traits. Field estimates of sexual and natural selection from two of the populations revealed fairly strong sexual selection on wing spot length, indicating that this trait has the potential to rapidly diverge, provided that variation is heritable and the observed selection is chronic.  相似文献   
165.
Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological applications.  相似文献   
166.
Photosystem II (PSII) is the plant photosynthetic reaction center that carries out the light driven oxidation of water. The water splitting reactions are catalyzed at a tetranuclear manganese cluster. The manganese stabilizing protein (MSP) of PSII stabilizes the manganese cluster and accelerates the rate of oxygen evolution. MSP can be removed from PSII, with an accompanying decrease in activity. Either an Escherichia coli expressed version of MSP or native, plant MSP can be rebound to the PSII reaction center; MSP reconstitution reverses the deleterious effects associated with MSP removal. We have employed Fourier transform infrared (FTIR) spectroscopy and solution small angle x-ray scattering (SAXS) techniques to investigate the structure of MSP in solution and to define the structural changes that occur before and after reconstitution to PSII. FTIR and SAXS are complementary, because FTIR spectroscopy detects changes in MSP secondary structure and SAXS detects changes in MSP size/shape. From the SAXS data, we conclude that the size/shape and domain structure of MSP do not change when MSP binds to PSII. From FTIR data acquired before and after reconstitution, we conclude that the reconstitution-induced increase in beta-sheet content, which was previously reported, persists after MSP is removed from the PSII reaction center. However, the secondary structural change in MSP is metastable after removal from PSII, which indicates that this form of MSP is not the lowest energy conformation in solution.  相似文献   
167.
Pomatoschistus minutus show paternal care in a resource defence mating system. We investigated the effect of nest-site availability on parasitic spawning. Each experimental pool contained four potentially nest-building males, four females and nests-sites in shortage (2) or excess (6). Both treatments were conducted in two populations; one with natural nest-sites in excess, one with a nest-site shortage. Microsatellite-DNA revealed that all nest-holders had fertilized most of the eggs they tended. Yet, 35% of the nests contained eggs fertilized by another male and 14.4% of the males had performed parasitic spawning. There was no site or treatment effect. Several females spawned in two nests, which coincided with parasitic spawnings, suggesting a cost to the nest-holder in terms of lost mating success. Nest-holders with and without eggs and non-nesting males all spawned parasitically, generating a significantly lower opportunity for sexual selection compared to if there had been no parasitic spawning.  相似文献   
168.
-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (β/)8-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel β-sheet termed domain C. New insights integrate the roles of Ca2 + , different substrates, and proteinaceous inhibitors for -amylases. Isozyme specific effects of Ca2 +  on the 80% sequence identical barley -amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2 +  with identical ligands. A fully hydrated fourth Ca2 +  at the interface of the AMY2/barley -amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2 +  occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2 + . Subsite mapping has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly discovered 'sugar tongs' site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other regions from AMY1 have higher substrate affinity than both parent isozymes. The latest revelations addressing various structural and functional aspects that govern the mode of action of barley -amylases are reported in this review.  相似文献   
169.
PEP-19 is a neuronal calmodulin-binding protein, and as such, a putative modulator of calcium regulated processes. In the present study, we used proteomics technology approaches such as peptidomics and imaging MALDI mass spectrometry, as well as traditional techniques (immunoblotting and in situ hybridization) to identify PEP-19 and, specifically, to measure PEP-19 mRNA and protein levels in an animal model of Parkinson's disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice resulted in a significant decrease in striatal PEP-19 mRNA. Capillary nano-flow liquid chromatography electrospray mass spectrometry analysis of striatal tissue revealed a significant decrease of the PEP-19 protein level. Moreover, imaging MALDI mass spectrometry also showed that PEP-19 protein was predominantly localized to the striatum of the brain tissue cross sections. After MPTP administration, PEP-19 levels were significantly reduced by 30%. We conclude that PEP-19 mRNA and protein expression are decreased in the striatum of a common animal model of Parkinson's disease. Further studies are needed to show the specific involvement of PEP-19 in the neurodegeneration seen in MPTP lesioned animals. Finally, this study has shown that the combination of traditional molecular biology techniques with novel, highly specific and sensitive mass spectrometry methods is advantageous in characterizing molecular events of many diseases, including Parkinson's disease.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号