全文获取类型
收费全文 | 240篇 |
免费 | 24篇 |
专业分类
264篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 4篇 |
2019年 | 11篇 |
2018年 | 10篇 |
2017年 | 10篇 |
2016年 | 16篇 |
2015年 | 14篇 |
2014年 | 22篇 |
2013年 | 21篇 |
2012年 | 20篇 |
2011年 | 12篇 |
2010年 | 12篇 |
2009年 | 13篇 |
2008年 | 12篇 |
2007年 | 12篇 |
2006年 | 14篇 |
2005年 | 12篇 |
2004年 | 4篇 |
2003年 | 8篇 |
2002年 | 6篇 |
2001年 | 2篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1991年 | 1篇 |
排序方式: 共有264条查询结果,搜索用时 15 毫秒
51.
52.
Mixing in 96-well microplates was studied using soluble pH indicators and a fluorescence pH sensor. Small amounts of alkali were added with the aid of a multichannel pipet, a piston pump, and a piezoelectric actuator. Mixing patterns were observed visually using a video camera. Addition of drops each of about 1 nL with the piezoelectric actuator resulted in umbrella and double-disklike shapes. Convective mixing was mainly observed in the upper part of the well, whereas the lower part was only mixed quickly when using the multichannel pipet and the piston pump with an addition volume of 5 microL or larger. Estimated mixing times were between a few seconds and several minutes. Mixing by liquid dispensing was much more effective than by shaking. A mixing model consisting of 21 elements could describe mixing dynamics observed by the dissolved fluorescence dye and by the optical immobilized pH sensor. This model can be applied for designing pH control in microplates or for design of kinetic experiments with liquid addition. 相似文献
53.
Carsten Slotta Jonathan Storm Nina Pfisterer Elena Henkel Svenja Kleinwächter Maren Pieper Lucia M. Ruiz-Perera Johannes F.W. Greiner Barbara Kaltschmidt Christian Kaltschmidt 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(8):1025-1033
TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2?/? cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy. 相似文献
54.
Svenja Belaoussoff Joel S. Shore 《Evolution; international journal of organic evolution》1995,49(3):545-556
Outcrossing rates varied from 0% to 69% among Jamaican populations of Turnera ulmifolia. A correlation between increasing herkogamy and outcrossing rate occurred among populations. Predictions from sex-allocation theory were tested by estimating allocation to reproductive functions. Significant differences in allocation patterns occurred among populations, but they were not correlated with outcrossing rates. The fitness consequences of inbreeding were assessed in high- and low-density greenhouse experiments for nine populations with variable outcrossing rates. No evidence for inbreeding depression occurred in early portions of the life history, but multiplicative fitness functions provide evidence for inbreeding depression. We tested the prediction that selfing populations have lower levels of inbreeding depression than outcrossing populations but found no significant correlation. 相似文献
55.
Stefanie Papp Kristin Moderzynski Jessica Rauch Liza Heine Svenja Kuehl Ulricke Richardt Heidelinde Mueller Bernhard Fleischer Anke Osterloh 《PLoS neglected tropical diseases》2016,10(8)
Rickettsia (R.) typhi is the causative agent of endemic typhus, an emerging febrile disease that is associated with complications such as pneumonia, encephalitis and liver dysfunction. To elucidate how innate immune mechanisms contribute to defense and pathology we here analyzed R. typhi infection of CB17 SCID mice that are congenic to BALB/c mice but lack adaptive immunity. CB17 SCID mice succumbed to R. typhi infection within 21 days and showed high bacterial load in spleen, brain, lung, and liver. Most evident pathological changes in R. typhi-infected CB17 SCID mice were massive liver necrosis and splenomegaly due to the disproportionate accumulation of neutrophils and macrophages (MΦ). Both neutrophils and MΦ infiltrated the liver and harbored R. typhi. Both cell populations expressed iNOS and produced reactive oxygen species (ROS) and, thus, exhibited an inflammatory and bactericidal phenotype. Surprisingly, depletion of neutrophils completely prevented liver necrosis but neither altered bacterial load nor protected CB17 SCID mice from death. Furthermore, the absence of neutrophils had no impact on the overwhelming systemic inflammatory response in these mice. This response was predominantly driven by activated MΦ and NK cells both of which expressed IFNγ and is considered as the reason of death. Finally, we observed that iNOS expression by MΦ and neutrophils did not correlate with R. typhi uptake in vivo. Moreover, we demonstrate that MΦ hardly respond to R. typhi in vitro. These findings indicate that R. typhi enters MΦ and also neutrophils unrecognized and that activation of these cells is mediated by other mechanisms in the context of tissue damage in vivo. 相似文献
56.
Aline Jatho Svenja Hartmann Naim Kittana Felicitas Mügge Christina M. Wuertz Malte Tiburcy Wolfram-Hubertus Zimmermann D?rthe M. Katschinski Susanne Lutz 《PloS one》2015,10(10)
IntroductionRhoA has been shown to be beneficial in cardiac disease models when overexpressed in cardiomyocytes, whereas its role in cardiac fibroblasts (CF) is still poorly understood. During cardiac remodeling CF undergo a transition towards a myofibroblast phenotype thereby showing an increased proliferation and migration rate. Both processes involve the remodeling of the cytoskeleton. Since RhoA is known to be a major regulator of the cytoskeleton, we analyzed its role in CF and its effect on myofibroblast characteristics in 2 D and 3D models.ResultsDownregulation of RhoA was shown to strongly affect the actin cytoskeleton. It decreased the myofibroblast marker α-sm-actin, but increased certain fibrosis-associated factors like TGF-β and collagens. Also, the detailed analysis of CTGF expression demonstrated that the outcome of RhoA signaling strongly depends on the involved stimulus. Furthermore, we show that proliferation of myofibroblasts rely on RhoA and tubulin acetylation. In assays accessing three different types of migration, we demonstrate that RhoA/ROCK/Dia1 are important for 2D migration and the repression of RhoA and Dia1 signaling accelerates 3D migration. Finally, we show that a downregulation of RhoA in CF impacts the viscoelastic and contractile properties of engineered tissues.ConclusionRhoA positively and negatively influences myofibroblast characteristics by differential signaling cascades and depending on environmental conditions. These include gene expression, migration and proliferation. Reduction of RhoA leads to an increased viscoelasticity and a decrease in contractile force in engineered cardiac tissue. 相似文献
57.
Sebastian Gresset Peter Westermeier Svenja Rademacher Milena Ouzunova Thomas Presterl Peter Westhoff Chris-Carolin Sch?n 《Plant physiology》2014,164(1):131-143
In plants with C4 photosynthesis, physiological mechanisms underlying variation in stable carbon isotope discrimination (Δ13C) are largely unknown, and genetic components influencing Δ13C have not been described. We analyzed a maize (Zea mays) introgression library derived from two elite parents to investigate whether Δ13C is under genetic control in this C4 species. High-density genotyping with the Illumina MaizeSNP50 Bead Chip was used for a detailed structural characterization of 89 introgression lines. Phenotypic analyses were conducted in the field and in the greenhouse for kernel Δ13C as well as plant developmental and photosynthesis-related traits. Highly heritable significant genetic variation for Δ13C was detected under field and greenhouse conditions. For several introgression library lines, Δ13C values consistently differed from the recurrent parent within and across the two phenotyping platforms. Δ13C was significantly associated with 22 out of 164 analyzed genomic regions, indicating a complex genetic architecture of Δ13C. The five genomic regions with the largest effects were located on chromosomes 1, 2, 6, 7, and 9 and explained 55% of the phenotypic variation for Δ13C. Plant development stage had no effect on Δ13C expression, as phenotypic as well as genotypic correlations between Δ13C, flowering time, and plant height were not significant. To our knowledge, this is the first study demonstrating Δ13C to be under polygenic control in the C4 species maize.During photosynthesis, plants use light energy to convert atmospheric CO2 and water into carbohydrates. For the element carbon, there are two stable isotopes, 12C and 13C. Due to the physical and chemical properties of photosynthetic CO2 fixation, plants are depleted in 13C compared with atmospheric CO2. In C3 plants, this discrimination of stable carbon isotopes (Δ13C) has long been used to detect genetic differences of water use efficiency and has been shown to be an accurate predictor for yield under drought (Rebetzke et al., 2002). As Δ13C is linearly related to the ratio of intercellular to atmospheric CO2 partial pressure (Farquhar et al., 1982), stomatal closure under drought stress is associated with reduced Δ13C. For C4 plants, our knowledge about the mechanisms underlying Δ13C and about its association with water use efficiency is much more limited. Differences in Δ13C between genotypes of C4 species have been reported, among others, for sorghum (Sorghum bicolor; Hubick et al., 1990) and maize (Zea mays; Monneveux et al., 2007). However, comprehensive studies analyzing the inheritance of Δ13C have not been performed to date.In C3 plants, the important steps of CO2 uptake include the diffusion of atmospheric CO2 through the boundary layer and the stomata. Subsequently, CO2 is taken up by the cell and enters the chloroplast, where carboxylation by Rubisco takes place. During photosynthetic carbon fixation, the strongest fractionation of carbon isotopes occurs during the carboxylation reaction of Rubisco (Roeske and O’Leary, 1984). A theoretical model of Δ13C in C3 photosynthesis has been described by Farquhar et al. (1982), in which Δ13C depends linearly on the ratio of intercellular to ambient partial pressure of CO2 (pi pa−1), and thus provides an indication of stomatal conductance and photosynthetic capacity. Additionally, the model includes the dependency of Δ13C on the fractionation of carbon isotopes during CO2 diffusion in the air and on the enzymatic properties of the Rubisco enzyme.For rice (Oryza sativa), tomato (Solanum lycopersicum), and wheat (Triticum aestivum), it has been shown that genetic variation for Δ13C is quantitative, genotype-by-environment interaction is small, and the trait heritability is high (Condon and Richards, 1992; Rebetzke et al., 2002; Comstock et al., 2005; Impa et al., 2005). Quantitative trait loci (QTL) for Δ13C have been mapped (Handley et al., 1994; Price et al., 2002; Rebetzke et al., 2008), and in the model plant Arabidopsis (Arabidopsis thaliana), four genes have been identified that are associated with Δ13C. Two are involved in stomatal patterning and thus influence stomatal conductance (Masle et al., 2005; Nilson and Assmann, 2010), and one of them influences photosynthetic capacity as well (Masle et al., 2005). One gene plays a role in cuticular wax composition and is also associated with stomatal conductance (Lü et al., 2012), whereas the fourth gene encodes a cellulose synthase subunit, and mutations in this gene lead to decreased Δ13C. Presumably, this is the result of a decreased cell turgor due to a decreased water transport capacity of the xylem (Liang et al., 2010).For C4 plants, our knowledge about the genetic mechanisms and physiological processes underlying Δ13C is much more limited, due to the more complex mechanism of CO2 fixation. The first carboxylation step in C4 plants takes place in mesophyll cells, in which CO2 is fixed by phosphoenolpyruvate carboxylase (PEPC). During this reaction, combined with the fractionation of carbon isotopes during HCO3− formation, carbon is actually enriched in 13C (Farquhar, 1983). The C4 organic acid formed by PEPC is transported to the bundle sheath cells, where CO2 is released to be fixed by Rubisco in the second step. However, a fraction of CO2 released in the bundle sheath can diffuse back to the mesophyll cells. The proportion of carbon fixed by PEPC that subsequently leaks out of the bundle sheath cells is termed leakiness (ϕ) and reduces the opportunity of Rubisco to discriminate against 13C in C4 plants. According to the theoretical model by Farquhar (1983), Δ13C and pi pa−1 are also linearly related in C4 plants, but the regression slope is determined by ϕ. Consequently, there can be a positive or a negative correlation of Δ13C and pi pa−1 depending on ϕ (Hubick et al., 1990). Regarding the entire fixation process, discrimination against 13C in C4 plants is not as strong as in C3 plants, and so far there have been few studies reporting a genetic variation of Δ13C in C4 plants. In sorghum, small but significant differences in Δ13C have been observed among 12 cultivars (Hubick et al., 1990), and similar to C3 plants, Δ13C has been shown to be correlated with transpiration efficiency (Henderson et al., 1998). Additionally, it has been shown for maize and sugarcane (Saccharum officinarum) that stress conditions lead to an increase in Δ13C (Bowman et al., 1989; Meinzer et al., 1994; Ranjith et al., 1995; Buchmann et al., 1996). Experiments under drought and under well-watered conditions showed higher values for Δ13C in drought-tolerant maize hybrids than in susceptible checks (Monneveux et al., 2007).The use of Δ13C as an indirect trait in breeding for drought tolerance in C4 species would be highly beneficial, given a stable trait expression and high heritability similar to that in C3 plants. To assess whether Δ13C can also be used in C4 plants as an indirect selection trait for drought-tolerant lines, it needs to be shown that Δ13C is under genetic control, although the physiology and molecular mechanisms of Δ13C are not yet fully understood. In this study, we used an introgression library (IL; Eshed and Zamir, 1994) derived from two elite parents to analyze the genetic variation in Δ13C under well-watered conditions. ILs have been successfully used in genetics to identify QTL for various qualitatively and quantitatively inherited traits. An IL is a defined set of nearly isogenic inbred lines derived from repeated backcrosses with one of the parents (recurrent parent [RP]) and marker-assisted selection for single fragments (Supplemental Fig. S1). Ideally, each IL line carries a single chromosome fragment of a donor parent (DP) in the genetic background of an RP. Taken together, the different segments cover the whole donor genome, allowing estimation of the effects of single donor fragments in an otherwise identical genetic background (Eshed and Zamir, 1994). The RP of the IL under investigation originates from southeastern Europe and is an elite inbred line of the maize dent pool. As DP, we chose an unrelated maize line representative of the European flint pool. The IL (IL_01–IL_89) was genotyped using the Illumina MaizeSNP50 Bead Chip (Ganal et al., 2011) carrying 56,110 single-nucleotide polymorphism (SNP) markers.Kernel Δ13C of 77 IL lines was measured in the field and in the greenhouse (Δ13C is genetically controlled in the C4 species maize. Our specific goals were (1) to characterize the genetic architecture of Δ13C (i.e. to determine the number of genomic regions associated with Δ13C), (2) to localize genomic regions influencing Δ13C, and (3) to assess the extent to which genotypic variation in Δ13C might be the result of differences in plant development.
Open in a separate windowaUnits are as follows: Δ13C, ‰; Fflow, d; Mflow, d; PH, cm; SenL, %; GV, %. 相似文献
Table I.
Overview of the experiments and experimental designsPhenotyping Environment | No. of IL Lines Tested | Experimental Design | Recorded Traitsa |
---|---|---|---|
Field | 89 IL lines RP | RCB with three blocks; 20 plants per experimental unit | Δ13C, Fflow, Mflow, PH, SenL, SPAD, Fv/Fm |
Greenhouse | 77 IL lines RP DP | RCB with three blocks; one plant per experimental unit | Δ13C, Fflow, Mflow, PH, SenL, SPAD, Fv/Fm |
Growth chamber | 89 IL lines RP DP | RCB with three blocks; 25 plants per experimental unit | GV |
58.
Genetic diversity and biogeography of native and introduced populations of Ulva pertusa (Ulvales,Chlorophyta) 下载免费PDF全文
Takeaki Hanyuda Svenja Heesch Wendy Nelson Judy Sutherland Shogo Arai Sung Min Boo Hiroshi Kawai 《Phycological Research》2016,64(2):102-109
Genetic diversity of native and introduced populations of Ulva pertusa (Ulvales, Chlorophyta) was examined using genetic markers of chloroplast, mitochondria and nuclear non‐coding region sequences. In the preliminary investigations to genetically identify the species for further analyses, U. pertusa was found only from temperate coasts of the more extensive collection sites including tropical coasts suggesting that it is a temperate species and basically not distributed in tropical regions. For chloroplast and mitochondrial sequences, repeating patterns of short tandem repeat sequences and nucleotide substitutions were used to recognize the haplotypes (genetic types). A total of 48 haplotypes based on combinations of chloroplast and mitochondrial haplotypes were recognized in the 244 specimens collected in the presumptive native range (Northeast Asia) and introduced populations (North America, Australia, New Zealand, Chile and Europe). Among them, 46 haplotypes (H1–H8 and H11–H48) were recognized in Northeast Asia, whereas only 1–5 haplotypes were recognized in the other areas. Nuclear microsatellite sequences were also analyzed. The lengths of the PCR products including the nuclear microsatellite region of 234 specimens were determined, and a total of 17 genotypes were recognized. Among them, 14 genotypes were found in Northeast Asia, whereas 1–7 genotypes were recognized in the other areas. Based on the results, the hypothesis that the native range of the species is in Northeast Asia was supported, and the populations outside this range were concluded to be non‐indigenous populations. 相似文献
59.
Burkhard Morgenstern Svenja Schöbel Chris-André Leimeister 《Algorithms for molecular biology : AMB》2017,12(1):27
Background
Various approaches to alignment-free sequence comparison are based on the length of exact or inexact word matches between pairs of input sequences. Haubold et al. (J Comput Biol 16:1487–1500, 2009) showed how the average number of substitutions per position between two DNA sequences can be estimated based on the average length of exact common substrings.Results
In this paper, we study the length distribution of k-mismatch common substrings between two sequences. We show that the number of substitutions per position can be accurately estimated from the position of a local maximum in the length distribution of their k-mismatch common substrings.60.
Svenja Nellinger Isabelle Schmidt Simon Heine Ann-Cathrin Volz Petra J. Kluger 《Biotechnology and bioengineering》2020,117(10):3160-3172
Tissue constructs of physiologically relevant scale require a vascular system to maintain cell viability. However, in vitro vascularization of engineered tissues is still a major challenge. Successful approaches are based on a feeder layer (FL) to support vascularization. Here, we investigated whether the supporting effect on the self-assembled formation of prevascular-like structures by microvascular endothelial cells (mvECs) originates from the FL itself or from its extracellular matrix (ECM). Therefore, we compared the influence of ECM, either derived from adipose-derived stem cells (ASCs) or adipogenically differentiated ASCs, with the classical cell-based FL. All cell-derived ECM (cdECM) substrates enabled mvEC growth with high viability. Prevascular-like structures were visualized by immunofluorescence staining of endothelial surface protein CD31 and could be observed on all cdECM and FL substrates but not on control substrate collagen I. On adipogenically differentiated ECM, longer and higher branched structures could be found compared with stem cell cdECM. An increased concentration of proangiogenic factors was found in cdECM substrates and FL approaches compared with controls. Finally, the expression of proteins associated with tube formation (E-selectin and thrombomodulin) was confirmed. These results highlight cdECM as promising biomaterial for adipose tissue engineering by inducing the spontaneous formation of prevascular-like structures by mvECs. 相似文献