全文获取类型
收费全文 | 185篇 |
免费 | 14篇 |
专业分类
199篇 |
出版年
2021年 | 2篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 8篇 |
2013年 | 11篇 |
2012年 | 4篇 |
2011年 | 7篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 9篇 |
2007年 | 11篇 |
2006年 | 8篇 |
2005年 | 13篇 |
2004年 | 14篇 |
2003年 | 16篇 |
2002年 | 14篇 |
2001年 | 3篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 7篇 |
1993年 | 8篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 4篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1973年 | 2篇 |
1968年 | 1篇 |
1934年 | 1篇 |
1929年 | 1篇 |
排序方式: 共有199条查询结果,搜索用时 15 毫秒
61.
Thomas Hoeg‐Jensen Signe Ridderberg Svend Havelund Lauge Schffer Per Balschmidt Ib Jonassen Per Veds Preben H. Olesen Jan Markussen 《Journal of peptide science》2005,11(6):339-346
Derivatization of insulin with phenylboronic acids is described, thereby equipping insulin with novel glucose sensing ability. It is furthermore demonstrated that such insulins are useful in glucose‐responsive polymer‐based release systems. The preferred phenylboronic acids are sulfonamide derivatives, which, contrary to naïve boronic acids, ensure glucose binding at physiological pH, and simultaneously operate as handles for insulin derivatization at LysB29. The glucose affinities of the novel insulins were evaluated by glucose titration in a competitive assay with alizarin. The affinities were in the range 15–31 mM (Kd), which match physiological glucose fluctuations. The dose‐responsive glucose‐mediated release of the novel insulins was demonstrated using glucamine‐derived polyethylene glycol polyacrylamide (PEGA) as a model, and it was shown that Zn(II) hexamer formulation of the boronated insulins resulted in steeper glucose sensitivity relative to monomeric insulin formulation. Notably, two of the boronated insulins displayed enhanced insulin receptor affinity relative to native insulin (113%–122%) which is unusual for insulin LysB29 derivatives. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
62.
The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2+) ions/hexamer), only the hexamer transition is observed. The results of this study show that the thermal stability of insulin is closely linked to the association state and that the zinc hexamer remains stable at much higher temperatures than the monomer. This is in contrast to studies with chemical denaturants where it has been shown that monomer unfolding takes place at much higher denaturant concentrations than the dissociation of higher oligomers [Ahmad, A., et al. (2004) J. Biol. Chem. 279, 14999-15013]. 相似文献
63.
Hoestgaard-Jensen K Christiansen G Honoré B Birkelund S 《FEMS immunology and medical microbiology》2011,62(2):148-156
The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ?CPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ?CPAR39 infection. Using immunofluorescence laser confocal microscopy and two-dimensional gel electrophoresis, we investigated the ?CPAR39 infection of C. pneumoniae AR39. It was observed that ?CPAR39 infection differentially suppressed the C. pneumoniae protein synthesis as the polymorphic membrane protein 10 and the secreted chlamydial protein Cpn0796 was hardly expressed while the secreted chlamydial protein Cpaf was expressed, but not secreted. The inclusion membrane protein, IncA, was demonstrated to surround the phage-infected abnormal reticulate bodies (RB) as well as being located in the inclusion membrane. As IncA is secreted by the type 3 secretion (T3S) system, it is likely that the T3S is disrupted in the phage-infected chlamydiae such that it accumulates around the infected RB. 相似文献
64.
Svend Roesen Madsen Carl Erik Olsen Hussam Hassan Nour-Eldin Barbara Ann Halkier 《Plant physiology》2014,166(3):1450-1462
In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers.Feeding behavior of herbivorous insects and distribution of defense compounds in plants have been suggested to be a result of an arms race between plants and insects that has spanned millions of years (Ehrlich and Raven, 1964). Whether insects adapted first to plants or the other way around is an ongoing debate in this research field (Schoonhoven et al., 2005; Ali and Agrawal, 2012). Leaf margin accumulation of defense compounds has been demonstrated in various plant species (Gutterman and Chauser-Volfson, 2000; Chauser-Volfson et al., 2002; Kester et al., 2002; Cooney et al., 2012). In the model plant Arabidopsis (Arabidopsis thaliana), higher concentration of glucosinolates, which constitute a major part of the chemical defense system in this plant (Kliebenstein et al., 2001a; Halkier and Gershenzon, 2006), was found at the leaf midrib and margins compared with the leaf lamina (Shroff et al., 2008; Sønderby et al., 2010). This nonuniform leaf distribution of glucosinolates appeared to explain the feeding pattern of a generalist herbivore (Helicoverpa armigera), as it avoided feeding at the leaf margin and midrib (Shroff et al., 2008). A similar feeding pattern on Arabidopsis was observed for a different generalist herbivore, Spodoptera littoralis (Schweizer et al., 2013). Interestingly, S. littoralis was shown to favor feeding from Arabidopsis leaf margins in glucosinolate-deficient mutants (Schweizer et al., 2013), which could indicate an inherent preference for margin feeding and that Arabidopsis adapted to such behavior by accumulating defense compounds here. A damaged leaf margin may be more critical for leaf stability than damage to inner leaf parts (Shroff et al., 2008), further motivating protection of this tissue. The margin-feeding preference of S. littoralis might be explained by better nutritional value of the leaf margin cells (Schweizer et al., 2013), which has been shown to consist of specialized elongated cell files (Koroleva et al., 2010; Nakata and Okada, 2013).Other distribution patterns have been reported for glucosinolates in an Arabidopsis leaf. A study investigating spatiotemporal metabolic shifts during senescence in Arabidopsis reported that fully expanded mature leaves exhibited a glucosinolate gradient from base to tip, with highest level of glucosinolates at the leaf base (Watanabe et al., 2013). In contrast to the horizontal plane, less has been reported on distribution of glucosinolates in the vertical plane of a leaf. A localization study of cyanogenic glucosides, defense molecules related to glucosinolates (Halkier and Gershenzon, 2006), determined that these compounds primarily were located in the epidermis of sorghum (Sorghum bicolor; Kojima et al., 1979). Whereas epidermis-derived trichomes in Arabidopsis were recently demonstrated to contain glucosinolates and to express glucosinolate biosynthetic genes (Frerigmann et al., 2012), no studies have investigated glucosinolates in the epidermal cell layer.Based on promoter-GUS studies, biosynthesis of glucosinolates in leaves of Arabidopsis has been associated with primarily major and minor veins in leaves and silique walls (Mikkelsen et al., 2000; Reintanz et al., 2001; Tantikanjana et al., 2001; Chen et al., 2003; Grubb et al., 2004; Schuster et al., 2006; Gigolashvili et al., 2007; Li et al., 2011; Redovniković et al., 2012). The discrepancy between vasculature-associated glucosinolate biosynthesis and margin accumulation of glucosinolates suggests that transport processes must be involved in establishing the distribution pattern of glucosinolates within a leaf.Plant transport systems include the apoplastic xylem, the symplastic phloem, and plasmodesmata. Xylem transport is mainly driven by an upward pull generated by transpiration from aerial plant organs, thereby directing transport to sites of rapid evaporation (such as leaf margins; Sattelmacher, 2001). Phloem flow is facilitated by an osmosis-regulated hydrostatic pressure difference between source and sink tissue, primarily generated by Suc bulk flow (Lucas et al., 2013). Plasmodesmata are intercellular channels that establish symplasmic pathways between neighboring cells, and most cell types in a plant are symplastically connected via plasmodesmata (Roberts and Oparka, 2003). Translocation of small molecules in these channels is driven by diffusion and is regulated developmentally as well as spatially to form symplastically connected domains (Roberts and Oparka, 2003; Christensen et al., 2009). To what extent any of these transport processes are involved in establishing specific distribution patterns of glucosinolates within leaves is not known.Recently, two plasma membrane-localized, glucosinolate-specific importers, GLUCOSINOLATE TRANSPORTER1 (GTR1) and GTR2, were identified in Arabidopsis (Nour-Eldin et al., 2012). In leaf, their expression patterns were shown to be in leaf veins (GTR1 and GTR2) and surrounding mesophyll cells (GTR1; Nour-Eldin et al., 2012). Absence of aliphatic and indole glucosinolates in seeds of the gtr1gtr2 double knockout (dKO) mutant (gtr1gtr2 dKO) demonstrated that these transporters are essential for long-distance glucosinolate transport to the seeds and indicates a role in phloem loading (Nour-Eldin et al., 2012). Another study investigating long-distance transport of glucosinolates in the 3-week-old wild type and gtr1gtr2 dKO indicated that GTR1 and GTR2 were involved in bidirectional transport of aliphatic glucosinolates between root and shoot via both phloem and xylem pathways (Andersen et al., 2013). The authors suggested a role for GTR1 and GTR2 in the retention of long-chained aliphatic glucosinolates in roots by removing the compounds from the xylem (Andersen et al., 2013).Identification of the glucosinolate transporters GTR1 and GTR2 has provided a molecular tool to investigate the role of transport processes in establishing leaf glucosinolate distribution. In this study, we have performed a detailed spatial investigation of the distribution of an exogenously fed glucosinolate (sinigrin) and endogenous glucosinolates within mature wild-type and gtr1gtr2 dKO Arabidopsis leaves, achieved by collecting and analyzing leaf parts at the horizontal (y axis: petiole, base, and tip; x axis: midrib, lamina, and margin) as well as at the vertical leaf plane (z axis: abaxial epidermis). Furthermore, we analyze wild-type and gtr1gtr2 dKO root xylem sap and leaf apoplastic fluids for glucosinolates. Based on our results, we propose a model where GTR1 and GTR2 import glucosinolates from the apoplast to the symplast and where the glucosinolate distribution pattern within an Arabidopsis leaf is established via symplasmic movement of glucosinolates through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in peripheral cell layers. 相似文献
65.
Jennie A. Jackson Svend Erik Mathiassen Patrick G. Dempsey 《Journal of electromyography and kinesiology》2009,19(3):416-427
ObjectivesTo quantify the variance introduced to trapezius electromyography (EMG) through normalization by sub-maximal reference voluntary exertions (RVE), and to investigate the effect of increased normalization efforts as compared to other changes in data collection strategy on the precision of occupational EMG estimates.MethodsWomen performed four RVE contractions followed by 30 min of light, cyclic assembly work on each of two days. Work cycle EMG was normalized to each of the RVE trials and seven exposure parameters calculated. The proportions of exposure variance attributable to subject, day within subject, and cycle and normalization trial within day were determined. Using this data, the effect on the precision of the exposure mean of altering the number of subjects, days, cycles and RVEs during data collection was simulated.ResultsFor all exposure parameters a unique component of variance due to normalization was present, yet small: less than 4.4% of the total variance. The resource allocation simulations indicated that marginal improvements in the precision of a group exposure mean would occur above three RVE repeats for EMG collected on one day, or beyond two RVEs for EMG collected on two or more days. 相似文献
66.
The RIG‐I‐like receptor LGP2 inhibits Dicer‐dependent processing of long double‐stranded RNA and blocks RNA interference in mammalian cells 下载免费PDF全文
Annemarthe G van der Veen Pierre V Maillard Jan Marten Schmidt Sonia A Lee Safia Deddouche‐Grass Annabel Borg Svend Kjær Ambrosius P Snijders Caetano Reis e Sousa 《The EMBO journal》2018,37(4)
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG‐I‐like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon‐stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG‐I, MDA5 and, the least‐studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus‐derived double‐stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi‐dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA‐mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2‐mediated antagonism of dsRNA‐mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins. 相似文献
67.
68.
69.
Synopsis This article reports the application of Hayashi's histochemical technique for -glucoronidase to mouse epididymis. A methodological study. which established optimal conditions for demonstrating the enzyme in this organ, is reported. The distribution pattern of -glucuronidase is described and correlated with previous data for -naphtyl acetate esterase. Differences between sites of granular and diffuse reaction product for these two enzymes are recorded. Possible interpretations of these findings in terms of intracellular localization of enzymes are discussed. Studies on different strains reveal regular differences in histochemical organization between mice of various genotypes. Histochemical data which imply androgen inducibility of -glucuronidase in mouse epididymis are preliminarily noted.
Present address: Department of Anatomy, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada. 相似文献
70.
Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper 总被引:1,自引:0,他引:1