首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   15篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   11篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   8篇
  2005年   13篇
  2004年   14篇
  2003年   16篇
  2002年   13篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1968年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
151.
Abstract The gene encoding lysyl-tRNA synthetase ( lysS ) in Mycoplasma hominis was cloned and sequenced. The gene was found to have an open reading frame of 1466 bp encoding a polypeptide with a predicted molecular mass of 57 kDa. The amino acid sequence showed 44.3% and 43.7% identity to the Escherichia coli lysyl-tRNA synthetases, encoded by lysS and lysU . Only one lysyl-tRNA synthetase encoding gene was found in M. hominis . The G+C content of the gene was found to be 28.6%, which is significantly lower than in other prokaryotes. The gene was located 4 kb upstream of the M. hominis PG21 rRNA B operon.  相似文献   
152.
153.
Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα‐Cα distances, solvent exposure, and side‐chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C‐terminus of the B‐chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild‐type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R‐state conformation and thus showing that the R‐state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.  相似文献   
154.
The bacterial population in barley field soil was estimated by determining the numbers of (i) cells reducing the artificial electron acceptor 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) to CTC-formazan (respiratory activity), (ii) cells dividing a limited number of times (microcolony formation) on nutrient-poor media, (iii) cells dividing many times (colony formation) on nutrient-poor agar media, and (iv) cells stained with acridine orange (total counts). The CTC reduction assay was used for the first time for populations of indigenous soil bacteria and was further developed for use in this environment. The number of viable cells was highest when estimated by the number of microcolonies developing during 2 months of incubation on filters placed on the surface of nutrient-poor media. The number of bacteria reducing CTC to formazan was slightly lower than the number of bacteria forming microcolonies. Traditional plate counts of CFU (culturable cells) yielded the lowest estimate of viable cell numbers. The microcolony assay gave an estimate of both (i) cells forming true microcolonies (in which growth ceases after a few cell divisions) representing viable but nonculturable cells and (ii) cells forming larger microcolonies (in which growth continues) representing viable, culturable cells. The microcolony assay, allowing single-cell observations, thus seemed to be best suited for estimation of viable cell numbers in soil. The effect on viable and culturable cell numbers of a temperature increase from 4 to 17°C for 5 days was investigated in combination with drying or wetting of the soil. Drying or wetting prior to the temperature increase, rather than the temperature increase per se, affected both the viable and culturable numbers of bacteria; both numbers were reduced in predried soil, while they increased slightly in the prewetted soil.  相似文献   
155.
156.
157.
Chlamydia trachomatis infection is associated with severe Fallopian tube tissue damage leading to tubal infertility and ectopic pregnancy. To explore the molecular mechanisms behind infection an ex vivo model was established from human Fallopian tubes and examined by scanning electron microscopy and immunohistochemistry. Extensive tissue destruction affecting especially ciliated cells was observed in C. trachomatis infected human Fallopian tube organ culture. Interleukin-1 (IL-1) produced by epithelial cells was detected after infection. Addition of IL-1 receptor antagonist (IL-1RA) completely eliminated tissue destruction induced by C. trachomatis. The anti-inflammatory cytokine IL-10 reduced the damaging effect of C. trachomatis infection, however, to a lesser extent than IL-1RA. Furthermore, IL-1 was found to induce IL-8, a neutrophil attractant, using a signal transduction pathway involving p38 MAP kinase. Consequently, IL-1 has the potential to generate a cellular infiltrate at the site of infection in vivo. Blocking the IL-1 receptors by IL-1RA eliminated tissue destruction and cytokine production. Hence, these studies show the importance of IL-1 in initiating the tissue destruction observed in the Fallopian tube following C. trachomatis infection. Because leukocytes are absent in the ex vivo model, this study strongly indicates that IL-1 is the initial proinflammatory cytokine activated by C. trachomatis infection.  相似文献   
158.
In mice, targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinson's disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinson's disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinson's disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinson's disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.  相似文献   
159.
During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.  相似文献   
160.
AID deaminates cytosine in the context of single stranded DNA to generate uracil, essential for effective class-switch recombination, somatic hypermutation and gene conversion at the B cell immunoglobulin locus. As a nuclear DNA mutator, AID activity must be tightly controlled and regulated, but the genetic analysis of AID and other DNA deaminases has left unstudied a number of important biochemical details. We have asked fundamental questions regarding AID's substrate recognition and processing, i.e. whether AID acts distributively or processively. We demonstrate that in vitro, human AID exhibits turnover, a prerequisite for our analysis, and show that it exhibits a distributive mode of action. Using a variety of different assays, we established that human AID is alone unable to act processively on any of a number of DNA substrates, i.e. one AID molecule is unable to carry out multiple, sequential deamination events on the same substrate. This is in contrast to the cytoplasmically expressed anti-viral DNA deaminase APOBEC3G, which acts in a processive manner, possibly suggesting that evolutionary pressure has altered the ability of DNA deaminases to act in a processive or distributive manner, depending on the physiological need.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号