首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2832篇
  免费   217篇
  国内免费   2篇
  3051篇
  2023年   14篇
  2022年   37篇
  2021年   61篇
  2020年   38篇
  2019年   42篇
  2018年   53篇
  2017年   54篇
  2016年   96篇
  2015年   149篇
  2014年   166篇
  2013年   185篇
  2012年   233篇
  2011年   253篇
  2010年   148篇
  2009年   134篇
  2008年   181篇
  2007年   173篇
  2006年   156篇
  2005年   141篇
  2004年   124篇
  2003年   129篇
  2002年   96篇
  2001年   31篇
  2000年   15篇
  1999年   24篇
  1998年   26篇
  1997年   22篇
  1996年   18篇
  1995年   10篇
  1994年   15篇
  1993年   9篇
  1992年   8篇
  1990年   10篇
  1988年   6篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   7篇
  1983年   5篇
  1982年   19篇
  1981年   11篇
  1980年   14篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   8篇
  1974年   6篇
  1951年   9篇
  1950年   5篇
  1948年   5篇
排序方式: 共有3051条查询结果,搜索用时 15 毫秒
991.
For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non‐synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high‐resolution biochemical analyses of specific synapse subpopulations. Employing knock‐in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high‐resolution biochemical analyses of specific synapse subpopulations in health and disease.  相似文献   
992.
993.
Alteration of natural flow regime is considered a major threat to biodiversity in river floodplain ecosystems. Measurements of quantitative relationships between flow regime change and biodiversity are, however, incomplete and inconclusive. This hampers the assessment of human impact on riverine floodplain wetlands in global biodiversity evaluations. We systematically reviewed the scientific literature and extracted information from existing data sets for a meta-analysis to unravel a general quantitative understanding of the ecological consequences of altered flow regimes. From 28 studies we retrieved both ecological and hydrological data. Relative mean abundance of original species (mean species abundance, MSA) and relative species richness were used as effect size measures of biodiversity intactness. The meta-analysis showed that alteration of a natural flow regime reduces the MSA by more than 50 % on average, and species richness by more than 25 %. Impact on species richness and abundance tends to be related to the degree of hydrological alteration. These results can be used in strategic quantitative assessments by incorporating the relationships into global models on environmental change and biodiversity such as GLOBIO-aquatic.  相似文献   
994.
995.
Outbreaks of crown‐of‐thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo‐Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2–4 °C above ambient) and acidification (0.3–0.5 pH units below ambient) in flow‐through cross‐factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near‐future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow‐on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.  相似文献   
996.
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow‐water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow‐water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow‐water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow‐water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic‐rate‐dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow‐water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern.  相似文献   
997.
998.
Understanding the product and process variable on the final product performance is an essential part of the quality-by-design (QbD) principles in pharmaceutical development. The hard capsule is an established pharmaceutical dosage form used worldwide in development and manufacturing. The empty hard capsules are supplied as an excipient that is filled by pharmaceutical manufacturers with a variety of different formulations and products. To understand the potential variations of the empty hard capsules as an input parameter and its potential impact on the finished product quality, a study was performed investigating the critical quality parameters within and in between different batches of empty hard gelatin capsules. The variability of the hard capsules showed high consistency within the specification of the critical quality parameters. This also accounts for the disintegration times, when automatic endpoint detection was used. Based on these data, hard capsules can be considered as a suitable excipient for product development using QbD principles.  相似文献   
999.
Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post‐genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome‐scale metabolic network for E. siliculosus, EctoGEM ( http://ectogem.irisa.fr ). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co‐factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号