首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2906篇
  免费   216篇
  国内免费   2篇
  3124篇
  2023年   14篇
  2022年   37篇
  2021年   61篇
  2020年   38篇
  2019年   42篇
  2018年   53篇
  2017年   53篇
  2016年   94篇
  2015年   149篇
  2014年   166篇
  2013年   185篇
  2012年   232篇
  2011年   253篇
  2010年   147篇
  2009年   134篇
  2008年   178篇
  2007年   169篇
  2006年   156篇
  2005年   140篇
  2004年   124篇
  2003年   129篇
  2002年   96篇
  2001年   32篇
  2000年   15篇
  1999年   23篇
  1998年   28篇
  1997年   22篇
  1996年   19篇
  1995年   13篇
  1994年   15篇
  1993年   13篇
  1992年   13篇
  1991年   6篇
  1990年   14篇
  1988年   8篇
  1987年   13篇
  1986年   8篇
  1985年   13篇
  1984年   11篇
  1983年   15篇
  1982年   20篇
  1981年   16篇
  1980年   17篇
  1979年   17篇
  1978年   7篇
  1977年   8篇
  1976年   11篇
  1974年   7篇
  1968年   6篇
  1951年   9篇
排序方式: 共有3124条查询结果,搜索用时 0 毫秒
941.
942.
Processing and presentation of antigen on MHC-I class I molecules serves to present peptides derived from cytosolic proteins to CD8+ T cells. Infection with bacteria that remain in phagosomal compartments, such as Mycobacterium tuberculosis (Mtb), provides a challenge to this immune recognition as bacterial proteins are segregated from the cytosol. Previously we identified the Mtb phagosome itself as an organelle capable of loading MHC Class I molecules with Mtb antigens. Here, we find that the TAP transporter, responsible for importing peptides into the ER for loading in Class I molecules, is both present and functional in Mtb phagosomes. Furthermore, we describe a novel peptide reagent, representing the N-terminal domain of the bovine herpes virus UL49.5 protein, which is capable of specifically inhibiting the lumenal face of TAP. Together, these results provide insight into the mechanism by which peptides from intra-phagosomal pathogens are loaded onto Class I molecules.  相似文献   
943.
Migration of encephalitogenic CD4+ T lymphocytes across the blood-brain barrier is an essential step in the pathogenesis of multiple sclerosis (MS). We here demonstrate that expression of the co-stimulatory receptor NKG2D defines a subpopulation of CD4+ T cells with elevated levels of markers for migration, activation, and cytolytic capacity especially when derived from MS patients. Furthermore, CD4+NKG2D+ cells produce high levels of proinflammatory IFN-γ and IL-17 upon stimulation. NKG2D promotes the capacity of CD4+NKG2D+ cells to migrate across endothelial cells in an in vitro model of the blood-brain barrier. CD4+NKG2D+ T cells are enriched in the cerebrospinal fluid of MS patients, and a significant number of CD4+ T cells in MS lesions coexpress NKG2D. We further elucidated the role of CD4+NKG2D+ T cells in the mouse system. NKG2D blockade restricted central nervous system migration of T lymphocytes in vivo, leading to a significant decrease in the clinical and pathologic severity of experimental autoimmune encephalomyelitis, an animal model of MS. Blockade of NKG2D reduced killing of cultivated mouse oligodendrocytes by activated CD4+ T cells. Taken together, we identify CD4+NKG2D+ cells as a subpopulation of T helper cells with enhanced migratory, encephalitogenic and cytotoxic properties involved in inflammatory CNS lesion development.  相似文献   
944.
The investigation of lung dynamics on alveolar scale is crucial for the understanding and treatment of lung diseases, such as acute lung injury and ventilator induced lung injury, and to promote the development of protective ventilation strategies. One approach to this is the establishment of numerical simulations of lung tissue mechanics where detailed knowledge about three‐dimensional alveolar structure changes during the ventilation cycle is required. We suggest four‐dimensional optical coherence tomography (OCT) imaging as a promising modality for visualizing the structural dynamics of single alveoli in subpleural lung tissue with high temporal resolution using a mouse model. A high‐speed OCT setup based on Fourier domain mode locked laser technology facilitated the acquisition of alveolar structures without noticeable motion artifacts at a rate of 17 three‐dimensional stacks per ventilation cycle. The four‐dimensional information, acquired in one single ventilation cycle, allowed calculating the volume‐pressure curve and the alveolar compliance for single alveoli. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
945.
946.
947.

Background

Topoisomerase I (Top1) is the target of Top1 inhibitor chemotherapy. The TOP1 gene, located at 20q12-q13.1, is frequently detected at elevated copy numbers in colorectal cancer (CRC). The present study explores the mechanism, frequency and prognostic impact of TOP1 gene aberrations in stage III CRC and how these can be detected by fluorescent in situ hybridization (FISH).

Methods

Nine CRC cell line metaphase spreads were analyzed by FISH with a TOP1 probe in combination with a reference probe covering either the centromeric region of chromosome 20 (CEN-20) or chromosome 2 (CEN-2). Tissue sections from 154 chemonaive stage III CRC patients, previously studied with TOP1/CEN-20, were analyzed with TOP1/CEN-2. Relationships between biomarker status and overall survival (OS), time to recurrence (TTR) in CRC and time to local recurrence (LR; rectal cancer only) were determined.

Results

TOP1 aberrations were observed in four cell line metaphases. In all cell lines CEN-2 was found to reflect chromosomal ploidy levels and therefore the TOP1/CEN-2 probe combination was selected to identify TOP1 gene gains (TOP1/CEN-2≥1.5). One hundred and three patients (68.2%) had TOP1 gain, of which 15 patients (14.6%) harbored an amplification (TOP1/CEN-20≥2.0). TOP1 gene gain did not have any association with clinical endpoints, whereas TOP1 amplification showed a non-significant trend towards longer TTR (multivariate HR: 0.50, p = 0.08). Once amplified cases were segregated from other cases of gene gain, non-amplified gene increases (TOP1/CEN-2≥1.5 and TOP1/CEN-20<2.0) showed a trend towards shorter TTR (univariate HR: 1.57, p = 0.07).

Conclusions

TOP1 gene copy number increase occurs frequently in stage III CRC in a mechanism that often includes CEN-20. Using CEN-2 as a measurement for tumor ploidy levels, we were able to discriminate between different mechanisms of gene gain, which appeared to differ in prognostic impact. TOP1 FISH guidelines have been updated.  相似文献   
948.

Background

Neuromyelitis optica (NMO) and relapsing-remitting multiple sclerosis (RRMS) are difficult to differentiate solely on clinical grounds. Optical coherence tomography (OCT) studies investigating retinal changes in both diseases focused primarily on the retinal nerve fiber layer (RNFL) while rare data are available on deeper intra-retinal layers.

Objective

To detect different patterns of intra-retinal layer alterations in patients with NMO spectrum disorders (NMOSD) and RRMS with focus on the influence of a previous optic neuritis (ON).

Methods

We applied spectral-domain OCT in eyes of NMOSD patients and compared them to matched RRMS patients and healthy controls (HC). Semi-automatic intra-retinal layer segmentation was used to quantify intra-retinal layer thicknesses. In a subgroup low contrast visual acuity (LCVA) was assessed.

Results

NMOSD-, MS- and HC-groups, each comprising 17 subjects, were included in analysis. RNFL thickness was more severely reduced in NMOSD compared to MS following ON. In MS-ON eyes, RNFL thinning showed a clear temporal preponderance, whereas in NMOSD-ON eyes RNFL was more evenly reduced, resulting in a significantly lower ratio of the nasal versus temporal RNFL thickness. In comparison to HC, ganglion cell layer thickness was stronger reduced in NMOSD-ON than in MS-ON, accompanied by a more severe impairment of LCVA. The inner nuclear layer and the outer retinal layers were thicker in NMOSD-ON patients compared to NMOSD without ON and HC eyes while these differences were primarily driven by microcystic macular edema.

Conclusion

Our study supports previous findings that ON in NMOSD leads to more pronounced retinal thinning and visual function impairment than in RRMS. The different retinal damage patterns in NMOSD versus RRMS support the current notion of distinct pathomechanisms of both conditions. However, OCT is still insufficient to help with the clinically relevant differentiation of both conditions in an individual patient.  相似文献   
949.

Background

The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome.

Method and Results

In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na+ currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation).

Conclusion

In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na+ current and depolarization force.  相似文献   
950.
In a morphological ontology the expert’s knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号