首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2811篇
  免费   216篇
  国内免费   2篇
  2023年   14篇
  2022年   33篇
  2021年   61篇
  2020年   38篇
  2019年   42篇
  2018年   53篇
  2017年   53篇
  2016年   94篇
  2015年   149篇
  2014年   166篇
  2013年   184篇
  2012年   233篇
  2011年   254篇
  2010年   147篇
  2009年   134篇
  2008年   180篇
  2007年   169篇
  2006年   156篇
  2005年   140篇
  2004年   120篇
  2003年   129篇
  2002年   93篇
  2001年   30篇
  2000年   14篇
  1999年   23篇
  1998年   27篇
  1997年   22篇
  1996年   18篇
  1995年   10篇
  1994年   14篇
  1993年   9篇
  1992年   8篇
  1990年   10篇
  1988年   6篇
  1987年   10篇
  1986年   7篇
  1985年   11篇
  1984年   7篇
  1982年   19篇
  1981年   11篇
  1980年   14篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   8篇
  1974年   6篇
  1951年   9篇
  1950年   5篇
  1948年   5篇
  1936年   5篇
排序方式: 共有3029条查询结果,搜索用时 234 毫秒
191.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   
192.
Six pregnant sows of 180.6 ± 5.6 kg were fed either a Fusarium-contaminated (4.42 mg DON and 48.3 μg ZON per kg, DON per os, n = 3) or a control diet (0.15 mg DON and 5 μg ZON/kg) in the period of days 63 and 70 of gestation. On day 63 of gestation, sows fed the control diet were implanted with an intraperitoneal osmotic minipump (delivery rate of 10 μL/h, for 7 days) containing 50 mg pure (98%) DON in 2 ml 50% DMSO (DON ip, n = 3). Frequent plasma samples were taken to estimate the kinetics after oral and ip DON exposure. The intended continuous delivery of DON by the intraperitoneal minipump could not be shown, as there was a plasma peak (Cmax) of 4.2–6.4 ng DON/mL either immediately (sow IP-2+3) or 2.5 h (sow IP-1) after implantation of the pump followed by a one-exponential decline with a mean half-time (t1/2) of 1.75–4.0 h and only negligible DON plasma concentrations after 12 h. Therefore, the DON ip exposure has to be regarded as one single dose 1 week before termination of experiment. The DON per os sows showed a mean basis level (after achieving a steady state) of DON plasma concentration of about 6–8 ng/mL, as also indicated by the plasma DON concentration at the termination of the experiment. On day 70, caesarean section was carried out, the fetuses were killed immediately after birth, and samples of plasma, urine, and bile were taken to analyze the concentration of DON and its metabolite de-epoxy-DON. At necropsy there were no macroscopic lesions observed in any organ of either sows or piglets. Histopathological evaluation of sows liver and spleen revealed no alterations. The proliferation rate of peripheral blood mononuclear cells (PBMC) with or without stimulation was not affected by the kind of DON treatment. The exposure of pregnant sows at mid-gestation (days 63–70, period of organogenesis) to a Fusarium toxin-contaminated diet (4.42 mg DON and 0.048 mg ZON per kg) or pure DON via intraperitoneal osmotic minipump did not cause adverse effects on health, fertility, maintenance of pregnancy, and performance of sows and their fetuses. However, DON was detected in fetus plasma, indicating that this toxin can pass the placental barrier and may cause changes in the proportion of white blood cells (lower monocyte and neutrophil and higher lymphocyte proportion in DON per os fetuses).  相似文献   
193.
The multidrug resistance-related protein-1 (MRP1) is important for the management of oxidative stress in vascular cells in vivo. Substrates of MRP1 are, among others, glutathione and the leukotriene C4 (LTC4), an eicosanoid and mediator of inflammation. Angiotensin (Ang) II infusion results in MRP1?/? mice compared to wild-type mice in improved endothelial function and reduced reactive oxygen species (ROS) formation. However, the interaction between Ang II, LTC4 and MRP1 is not completely understood and has never been investigated in vitro. Ang II induced in vascular smooth muscle cells (VSMC) the release of LTC4 and the generation of ROS. Pharmacologic inhibition of MRP1 via MK 571 significantly reduced Ang II-induced ROS release (L012-luminescence) in VSMC. The release of ROS after Ang II stimulation is inhibited, to a comparable degree, by blockade of the Cys-LT1 receptor with montelukast. Incubation of VSMC with recombined LTC4 and Ang II caused enhanced rates of proliferation in VSMC. This effect can be rescued by either MRP1 or Cys-LT1 receptor inhibition. Accordingly, stimulation of VSMC with LTC4 reduces intracellular levels of glutathione, but does not affect apoptosis. LTC4 stimulation results in a significant activation of MRP1, but does not alter MRP1 expression. These findings indicate a connection between Ang II, MRP1 and LTC4. Both, MRP1 and LTC4, are potentially promising targets for atheroprotective therapy.  相似文献   
194.
DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3 ± 1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment.  相似文献   
195.
We identified 11 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) that occur in concentrations equivalent to starch (mg/g fresh mass) in aboveground tissues of coyote tobacco (Nicotiana attenuata) and differ in their sugar moieties and malonyl sugar esters (0-2). Concentrations of HGL-DTGs, particularly malonylated compounds, are highest in young and reproductive tissues. Within a tissue, herbivore elicitation changes concentrations and biosynthetic kinetics of individual compounds. Using stably transformed N. attenuata plants silenced in jasmonate production and perception, or production of N. attenuata Hyp-rich glycopeptide systemin precursor by RNA interference, we identified malonylation as the key biosynthetic step regulated by herbivory and jasmonate signaling. We stably silenced N. attenuata geranylgeranyl diphosphate synthase (ggpps) to reduce precursors for the HGL-DTG skeleton, resulting in reduced total HGL-DTGs and greater vulnerability to native herbivores in the field. Larvae of the specialist tobacco hornworm (Manduca sexta) grew up to 10 times as large on ggpps silenced plants, and silenced plants suffered significantly more damage from herbivores in N. attenuata''s native habitat than did wild-type plants. We propose that high concentrations of HGL-DTGs effectively defend valuable tissues against herbivores and that malonylation may play an important role in regulating the distribution and storage of HGL-DTGs in plants.  相似文献   
196.
197.
Cellular activity depends to a large extent on membrane bilayer dynamics. Many processes, such as organelle biogenesis and vesicular transport, rely on alterations in membrane structure and shape. It is now widely accepted that intracellular membrane curvature generation and remodelling is mediated and regulated by protein action, and the mechanisms behind the processes are currently being revealed. Here, we will briefly discuss the key principles of membrane deformation and focus on different endocytic events that use various kinds of proteins to shape the plasma membrane into transport carriers. The entry routes are adopted to make sure that a vast variety of molecules on the cell surface can be regulated by endocytosis. The principles for membrane sculpting of endocytic carriers can be viewed either from a perspective of rigid coat budding or of flexible opportunistic budding. We will discuss these principles and their implications, focusing on clathrin-dependent and -independent carrier formation and the proteins involved in the respective pathways.  相似文献   
198.
The genomic analysis of Streptococcus pneumoniae strains identified the Pneumococcal adherence and virulence factor B (PavB), whose repetitive sequences, designated Streptococcal Surface REpeats (SSURE), interact with human fibronectin. Here, we showed the gene in all tested pneumococci and identified that the observed differences in the molecular mass of PavB rely on the number of repeats, ranging from five to nine SSURE. PavB interacted with fibronectin and plasminogen in a dose‐dependent manner as shown by using various SSURE peptides. In addition, we identified PavB as colonization factor. Mice infected intranasally with ΔpavB pneumococci showed significantly increased survival times compared with wild‐type bacteria. Importantly, the pavB‐mutant showed a delay in transmigration to the lungs as observed in real‐time using bioluminescent pneumococci and decreased colonization rates in a nasopharyngeal carriage model. In co‐infection experiments the wild‐type out‐competed the pavB‐mutant and infections of epithelial cells demonstrated that PavB contributes to adherence to host cell. Blocking experiments suggested a function of PavB as adhesin, which was confirmed by direct binding of SSURE peptides to host cells. Finally, PavB may represent a new vaccine candidate as SSURE peptides reacted with human sera. Taken together, PavB is a surface‐exposed adhesin, which contributes to pneumococcal colonization and infections of the respiratory airways.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号