全文获取类型
收费全文 | 75篇 |
免费 | 3篇 |
专业分类
78篇 |
出版年
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2013年 | 7篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 6篇 |
2009年 | 3篇 |
2008年 | 1篇 |
2007年 | 8篇 |
2006年 | 7篇 |
2005年 | 3篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1992年 | 1篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1972年 | 3篇 |
排序方式: 共有78条查询结果,搜索用时 9 毫秒
71.
Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum 总被引:4,自引:0,他引:4
Arthan D Svasti J Kittakoop P Pittayakhachonwut D Tanticharoen M Thebtaranonth Y 《Phytochemistry》2002,59(4):459-463
The C-4 sulfated isoflavonoid, torvanol A (1), and the steroidal glycoside, torvoside H (3), together with the known glycoside, torvoside A (2), were isolated from a MeOH extract of Solanum torvum fruits. Upon enzymatic hydrolysis with beta-glucosidase, torvoside A (2) and torvoside H (3) yielded the corresponding acetal derivatives 4 and 5, respectively. Torvanol A (1), torvoside H (3) and compound 5 exhibited antiviral activity (herpes simplex virus type 1) with IC(50) values of 9.6, 23.2 and 17.4 microg/ml, respectively. Compounds 1-5 showed no cytotoxicity (at 50 microg/ml) against BC, KB and Vero cell lines. 相似文献
72.
A beta-glucosidase (torvosidase) was purified to homogeneity from the young leaves of Solanum torvum. The enzyme was highly specific for cleavage of the glucose unit attached to the C-26 hydroxyl of furostanol glycosides from the same plant, namely torvosides A and H. Purified torvosidase is a monomeric glycoprotein, with a native molecular weight of 87 kDa by gel filtration and a pI of 8.8 by native agarose IEF. Optimum pH of the enzyme for p-nitrophenyl-beta-glucoside and torvoside H was 5.0. Kinetic studies showed that Km values for torvoside A (0.06 3mM) and torvoside H (0.068 mM) were much lower than those for synthetic substrates, pNP-beta-glucoside (1.03 mM) and 4-methylumbelliferyl-beta-glucoside (0.78 mM). The enzyme showed strict specificity for the beta-d-glucosyl bond when tested for glycone specificity. Torvosidase hydrolyses only torvosides and dalcochinin-8'-beta-glucoside, which is the natural substrate of Thai rosewood beta-glucosidase, but does not hydrolyse other natural substrates of the GH1 beta-glucosidases or of the GH3 beta-glucosidase families. Torvosidase also hydrolyses C5-C10 alkyl-beta-glucosides, with a rate of hydrolysis increasing with longer alkyl chain length. The internal peptide sequence of Solanum beta-glucosidase shows high similarity to the sequences of family GH3 glycosyl hydrolases. 相似文献
73.
Toonkool P Metheenukul P Sujiwattanarat P Paiboon P Tongtubtim N Ketudat-Cairns M Ketudat-Cairns J Svasti J 《Protein expression and purification》2006,48(2):195-204
The coding sequence of the mature dalcochinase, a beta-glucosidase from Dalbergia cochinchinensis Pierre, was cloned and expressed in various systems. Expression in Escherichia coli resulted in an insoluble protein, which could be made soluble by co-expression with bacterial chaperonin GroESL. However, the enzyme had no activity. Recombinant expression in Pichia pastoris and Saccharomyces cerevisiae yielded an active enzyme. Dalcochinase was expressed under methanol induction in P. pastoris, since this was much more efficient than constitutive expression in P. pastoris or in S. cerevisiae. Addition of 0.5% casamino acids to the culture medium stabilized the pH of the culture and increased the protein yield by 3- to 5-folds. Insertion of a polyhistidine-tag either after the N-terminal alpha factor signal sequence or at the C-terminus failed to assist in purification by immobilized metal-ion affinity chromatography (IMAC) due to post-translational processing at both termini. A new construct of dalcochinase with an N-terminal truncation following the propeptide and eight histidine residues enabled its purification by IMAC, following hydrophobic interaction chromatography. The purified recombinant dalcochinase was apparently composed of differently post-translationally modified forms, but had kinetic properties and pH and temperature optima comparable to natural dalcochinase. The procedures reported here overcome the limitation in enzyme supply from natural sources, and allow further studies on structure-function relationships in this enzyme. 相似文献
74.
Pitak Chuawong Wirot Likittrakulwong Suwimon Suebka Nuttapon Wiriyatanakorn Patchreenart Saparpakorn Amata Taweesablamlert Wanwisa Sudprasert Tamara Hendrickson Jisnuson Svasti 《Proteins》2020,88(9):1133-1142
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn. This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn. The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity. 相似文献
75.
Nishimoto M Mori H Moteki T Takamura Y Iwai G Miyaguchi Y Okuyama M Wongchawalit J Surarit R Svasti J Kimura A Chiba S 《Bioscience, biotechnology, and biochemistry》2007,71(7):1703-1716
cDNAs encoding three alpha-glucosidases (HBGases I, II, and III) from European honeybees, Apis mellifera, were cloned and sequenced, two of which were expressed in Pichia pastoris. The cDNAs for HBGases I, II, and III were 1,986, 1,910, and 1,915 bp in length, and included ORFs of 1,767, 1,743, and 1,704 bp encoding polypeptides comprised of 588, 580, and 567 amino acid residues, respectively. The deduced proteins of HBGases I, II, and III contained 18, 14, and 8 putative N-linked glycosylation sites, respectively, but at least 2 sites in HBGase II were unmodified by N-linked oligosaccharide. In spite of remarkable differences in the substrate specificities of the three HBGases, high homologies (38-44% identity) were found in the deduced amino acid sequences. In addition, three genomic DNAs, of 13,325, 2,759, and 27,643 bp, encoding HBGases I, II, and III, respectively, were isolated from honeybees, and the sequences were analyzed. The gene of HBGase I was found to be composed of 8 exons and 7 introns. The gene of HBGase II was not divided by intron. The gene of HBGase III was confirmed to be made up of 9 exons and 8 introns, and to be located in the region upstream the gene of HBGase I. 相似文献
76.
Boonclarm D Sornwatana T Arthan D Kongsaeree P Svasti J 《Acta biochimica et biophysica Sinica》2006,38(8):563-570
An iridoid β-glucoside, namely plumieride coumarate glucoside, was isolated from the Plumeria obtusa (white frangipani) flower. A β-glucosidase, purified to homogeneity from P. obtusa, could hydrolyze plumieride coumarate glucoside to its corresponding β-O-coumarylplumieride. Plumeria β-glucosidase is a monomeric glycoprotein with a molecular weight of 60.6 kDa and an isoelectric point of 4.90. The purified β-glucosidase had an optimum pH of 5.5 for p-nitrophenol (pNP)-β-D-glucoside and for its natural substrate. The Km values for pNP-β-D-glucoside and Plumeria β-glucoside were 5.04±0.36 mM and 1.02±0.06 mM, respectively. The enzyme had higher hydrolytic activity towards pNP-β-D-fucoside than pNP-β-D-glucoside. No activity was found for other pNP-glycosides. Interestingly, the enzyme showed a high specificity for the glucosyl group attached to the C-7" position of the coumaryl moiety of plumieride coumarate glucoside. The enzyme showed poor hydrolysis of 4-methylumbelliferyl-β-glucoside and esculin, and did not hydrolyze alkyl-β-glucosides, glucobioses, cyanogenic-β-glucosides, steroid β-glucosides, nor other iridoid β-glucosides. In conclusion, the Plumeria β-glucosidase shows high specificity for its natural substrate, plumieride coumarate glucoside. 相似文献
77.
78.
Improvement in the resolution of human sperm protamines by use of iodoacetamide as alkylating agent.
By use of the neutral alkylating agent iodo [14C1] acetamide instead of ethylene imine or iodoacetate, the resolution of human protamines on gel electrophoresis and ion-exchange chromatography has been improved. Using 20-cm gels, human protamines may be fractionated into seven bands, including the two chromatographically distinct forms of HP1 and a hitherto undetected component HP4. On ion-exchange chromatography, HP2 and the two forms of HP1 may be isolated in sufficient purity for sequence analysis. 相似文献